説明

波形生成装置

【課題】 複数波の位相差や連続性を保ちつつ、リアルタイムで振幅比率を変更しながら希望の波形を出力する。
【解決手段】 波形生成装置1は、波形情報を記憶した複数の波形情報記憶手段3と、それぞれの波形情報記憶手段3から波形情報を読み出す波形制御手段4と、複数の波形情報記憶手段3からの波形情報をそれぞれ演算する複数の波形演算手段6と、波形演算手段6から出力される波形情報の振幅をそれぞれの所望のレベルで出力できるように振幅情報をそれぞれの波形演算手段6に出力する振幅制御手段5と、波形演算手段6から出力された複数の波形情報を合成する合成演算手段7とを有し、波形制御手段4は波形情報記憶手段3から波形情報を読み出せるように制御するとともに、波形演算手段6からの出力が所望の比率になるように振幅制御手段5を制御する。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、特にユーザが希望する波形を生成して出力する波形生成装置に関し、複数波の位相差や連続性を保ちつつ、リアルタイムで振幅比率を変更しながら希望の波形を出力することができる波形生成装置に関するものである。
【背景技術】
【0002】
電子機器として、例えば無線関連のアンプを評価する場合、希望する波形(信号波)や妨害波が重畳された信号波などを波形生成装置で生成し、この生成された各種波形をアンプに入力し、その受信状況から所定の性能を満たしているか否かを判定している。
【0003】
ところで、この種の電子機器の性能を評価する際に用いられる波形生成装置は、電子機器に対して通信システム方式に沿った波形を生成しているが、実際に電子機器を使用するユーザの希望条件に従った波形を生成することも必要となる。
【0004】
ここで、この種の波形生成装置に関連する先行技術としては、下記特許文献1や特許文献2に開示されるものが知られている。図6は特許文献1に開示される任意波形発生器のブロック図、図7は特許文献2に開示される出力振幅調整回路の回路図である。
【0005】
特許文献1に開示される任意波形発生器は、波形データメモリ使用量を減らし、出力波形の振幅制御を高精度に行うことを目的として、異なる波形データ振幅情報をもったパケットをメモリ内に複数もち、パケットのアドレスを切り替えることにより所望の波形データと振幅情報を乗算している。さらに説明すると、特許文献1の任意波形発生器では、図6に示すように、パケットメモリ51に、振幅情報Cnも格納し、波形用データメモリ52には出力波形の振幅が正規化されたディジタルデータを格納し、波形データモメモリ52とD/Aコンバータ53との間に設けたディジタル乗算器54で、波形データ出力に振幅情報Cn出力55を乗算して出力している。また、波形データ出力と振幅情報Cn出力とが、パケットメモリ51内の各波形パケットごとに格納されたコントロールデータにより切り換えられることにより振幅をコントロールしている。
【0006】
特許文献2に開示される出力振幅調整回路は、D−Aの出力振幅調整を高速・高精度で行うことを目的として、図7に示すように、入力信号と等しい第1デジタル信号61と、専用の高速演算回路62により用意した入力信号を2のべき乗で割った値の第2デジタル信号63を、複数のD−A変換器64A〜64Fに選択的に加え、その出力を加算している。また、第1デジタル信号61と第2デジタル信号63の選択比を変化させることでアナログ出力振幅を調整している。
【特許文献1】特開平7−273555号公報
【特許文献2】特開2000−138585号公報
【発明の開示】
【発明が解決しようとする課題】
【0007】
しかしながら、上述した特許文献1に開示される任意波形発生器では、波形と振幅情報が1対1の関係になっており、振幅情報を切り換えた時に波形を読み出す動作を伴うため、出力波形データも一緒に切り換わってしまい、出力波形の連続性を保つことができず、同期をとった測定が行えないという問題があった。例えば、基地局と携帯端末の試験では必ず同期を取らなければならない。
【0008】
また、上述した特許文献2に開示される出力振幅調整回路では、振幅の可変をアナログで行っているので、例えば温度や湿度などの周囲環境により振幅値が変化し、誤差要因が多くなる問題があった。また、複数のD−A変換器64A〜64FによるD−A変換後のデータをアナログ加算しているので、振幅の可変確度が制限され、例えば0.01dB/ステップといった細かい可変制御が行えず、測定に際して十分な可変確度が取れないという問題があった。さらに、D−A変換後のデータをアナログ加算することから、D−Aコンバータの個数も多くなり、回路規模が大きくなるという問題もあった。
【0009】
このように、従来の波形生成装置では、マルチキャリアという概念がなかったため、固定で持っている波形データに対して所望の波形を演算していた。また、今までは、制御側(CPU側)の負担を減らすために、振幅比の異なる波形を予め記憶媒体に保持させておき、それを読み込ませることにより振幅比の異なる波形を加算したり、波形の読み出すアドレスを位相差分だけカウンターで進めることにより、設定した位相差分だけずれた波形を加算するといった手法を採用していた。
【0010】
ところが、昨今ではユーザから所望の複数波形(例えば異なる信号波同士や信号波と妨害波)を加算し、振幅比と位相差をリアルタイムで制御するといったフレキシビリティが要求されている。
【0011】
そこで、本発明は上記問題点に鑑みてなされたものであって、複数波の位相差や連続性を保ちつつ、リアルタイムで振幅比率を変更しながら希望の波形を出力することができる波形生成装置を提供することを目的としている。
【課題を解決するための手段】
【0012】
上記目的を達成するため、本発明に記載された請求項1の波形生成装置は、波形情報を記憶した複数の波形情報記憶手段3と、前記それぞれの波形情報記憶手段から波形情報を読み出す波形制御手段4と、該波形制御手段によって読み出された前記複数の波形情報記憶手段からの波形情報をそれぞれ演算する複数の波形演算手段6と、前記波形演算手段から出力された複数の波形情報を合成する合成演算手段7とを備えた波形生成装置において、
前記波形演算手段から出力される波形情報の振幅をそれぞれの所望のレベルで出力できるように振幅情報を前記それぞれの波形演算手段に出力する振幅制御手段5を有しており、
前記波形制御手段は、前記波形情報記憶手段から前記波形情報を読み出せるように制御するとともに、前記波形演算手段からの出力が所望の比率になるように前記振幅制御手段を制御することを特徴とする。
【0013】
請求項2の波形生成装置は、請求項1記載の波形生成装置において、
前記波形制御手段4は、前記複数の波形情報記憶手段3の任意のアドレスを指示するアドレス生成部4bを有することを特徴とする。
【0014】
請求項3の波形生成装置は、請求項2記載の波形生成装置において、
前記アドレス生成部4bは、前記複数の波形情報記憶手段3毎に個々に有することを特徴とする。
【0015】
請求項4の波形生成装置は、請求項1〜3の何れかに記載の波形生成装置において、
前記波形制御手段4は、前記複数の波形情報記憶手段3からの波形情報を前記合成演算手段7に出力するタイミングを制御することを特徴とする。
【0016】
請求項5の波形生成装置は、請求項1〜4の何れかに記載の波形生成装置において、
前記波形制御手段4は、前記複数の波形情報記憶手段3からの波形情報の前記波形演算手段6への到達タイミングを調整する位相制御部4cを備えたことを特徴とする。
【0017】
請求項6の波形生成装置は、請求項5記載の波形生成装置において、
前記位相制御部4cは、前記複数の波形情報記憶手段3のサンプリングレートの比率に応じて前記波形演算手段6への出力タイミングを合わせることを特徴とする。
【0018】
請求項7の波形生成装置は、請求項1〜6の何れかに記載の波形生成装置において、
生成する波形の情報を設定データに基づいて表示する表示手段8を備えたことを特徴とする。
【発明の効果】
【0019】
本発明の波形生成装置によれば、複数の波形情報の振幅比率を独立して制御するので、各波形間の位相差や独立して制御される各波形の連続性を保ちつつ、リアルタイムで振幅比率を変更しながら波形を生成して出力することができる。また、複数の波形情報記憶手段を持ち、それぞれの波形の振幅比率を変更し演算することで複数のキャリアの波形出力が可能になる。さらに、デジタル演算を行うことにより、演算する複数波のレベル比を所望の比率に確度よく、かつ再現性のある波形生成を行うことができる。そして、複数の波形をデジタル演算(加算処理)してからD/A変換すれば、アナログで加算させたときよりもD/Aコンバータが少なくなる分だけ回路規模も小さくできる。
【0020】
請求項2の波形生成装置によれば、複数の波形を所望の位相差を保って生成出力することができる。
【0021】
請求項3の波形生成装置によれば、複数の波形情報記憶手段毎にアドレス生成部を有し、独立して位相制御できるので、各波形間の位相をずらしながら生成した波形を出力することができる。
【0022】
請求項4の波形生成装置によれば、複数の波形情報記憶手段からの波形情報を合成演算手段7に出力するタイミングを制御するので、複数の波形情報記憶手段からの波形情報の読み出し速度が変わっても対応することができる。
【0023】
請求項5の波形生成装置によれば、複数の波形情報記憶手段からの波形情報の波形演算手段への到達タイミングを調整する位相制御部を備えた構成なので、複数の波形情報記憶手段から読み出した波形情報を合成演算手段に出力する速度を合わせたり、複数の波形情報記憶手段の波形情報のサンプリングレートが異なる場合に出力タイミングを合わせることができる。
【0024】
請求項6の波形生成装置によれば、複数の波形情報記憶手段のサンプリングレートが異なっていても、その比率に応じて波形演算手段6への出力タイミングを合わせることができる。
【0025】
請求項7の波形生成装置によれば、生成する波形の情報を設定データに基づいて表示手段に表示するので、設定に並行して生成波形をモニタすることができる。
【発明を実施するための最良の形態】
【0026】
以下、本発明の実施の形態を図面を参照しながら具体的に説明する。図1は本発明に係る波形生成装置の概略構成を示すブロック図、図2は本発明に係る波形生成装置の第1形態を示すブロック図、図3は本発明に係る波形生成装置の第2形態を示すブロック図、図4及び図5は本発明に係る波形生成装置の表示例を示す図である。
【0027】
本例の波形生成装置は、特にユーザが希望する波形を生成出力するもので、従来のような位相制御のみ、振幅制御のみを行うものではなく、振幅比と位相差を個別または同時に設定でき、設定した位相差を保ったまま連続で振幅制御を可能としている。
【0028】
まず、本例の波形生成装置の第1形態について図1及び図2を参照しながら説明する。図1に示すように、本例の波形生成装置1は、設定入力手段2、波形情報記憶手段3、波形制御手段4、振幅制御手段5、波形演算手段6、合成演算手段7、表示手段8を備えて概略構成される。そして、第1形態の波形生成装置1A(1)では、波形制御手段4が制御部4aとアドレス生成部4bを備えている。なお、以下に説明する各形態の波形生成装置では、2つの波形を加算して生成出力する場合を例にとってその構成を説明する。
【0029】
図1及び図2に示す設定入力手段2は、例えば装置本体のパネルやパソコン等の外部端末装置の一部からなり、2つの波形記憶手段3に記憶される波形情報に基づいて生成出力される波形に関する各種設定情報を波形制御手段4に入力している。具体的に、2つの波形記憶手段3に記憶された波形情報に基づいて図4に示すような信号波形Aと妨害波形(雑音)Bとを重畳した波形を生成出力する場合には、周波数帯域、両信号の絶対値レベル、S/Nが設定入力情報として波形制御手段4に入力される。また、2つの波形記憶手段3に記憶された波形情報に基づいて図5に示すような異なる信号波形Aと信号波形Bとを所定周波数間隔faを空けて生成出力する場合には、両信号の絶対値レベルと周波数間隔が設定入力情報として波形制御手段4に入力される。
【0030】
図1及び図2に示す2つの波形情報記憶手段3(3A,3B)には、ユーザが希望する波形情報(デジタル信号による波形データ)が記憶されている。この波形情報は、波形生成前に予め各波形情報記憶手段3A,3Bに記憶させておいたり、外部インターフェースを介して例えばパソコンなどの外部端末装置から取り込むことができる。
【0031】
図1及び図2に示す波形制御手段4は、各波形情報記憶手段3A,3Bからの波形情報の読み出し制御、振幅制御手段5の制御、波形演算手段6の演算制御など各部を統轄制御している。図2に示すように、波形制御手段4は、制御部4aと2つのアドレス生成部4bを備えている。
【0032】
制御部4aは、設定入力手段2からの設定情報に基づいて波形データのアドレス値や振幅情報としての乗算係数を演算している。この制御部4aによって演算されたアドレス値は該当するアドレス生成部4bに設定情報(設定用信号)として出力される。また、制御部4aによって演算された振幅情報としての乗算係数は該当する振幅制御手段5に設定情報(設定用信号)として出力される。さらに、制御部4aは、ユーザが設定を実行したときにアドレス生成部4bA,4bBや振幅制御手段5A,5Bにトリガ信号を出力している。このトリガ信号には、振幅比のみの変更か、位相のみの変更か、振幅比と位相の両方の変更かを示す情報が含まれている。
【0033】
図2に示す2つのアドレス生成部4bA,4bBは、個々に対応する波形情報記憶手段3A,3Bの任意のアドレスを指示している。各アドレス生成部4bA,4bBは、前段レジスタ11と後段レジスタ12の2つのレジスタを備えており、ダブルバッファ構造を採用している。前段レジスタ11には今回使用されるアドレス値が格納され、後段レジスタ12には次回使用されるアドレス値が格納される。後段レジスタ12には、設定入力手段2からの設定情報に基づいて制御部4aが演算したアドレス値が格納される。そして、制御部4aから位相変更を示す情報を含むトリガ信号が入力されたときに、後段レジスタ12内のアドレス値が前段レジスタ11に受け渡される。
【0034】
図2に示す2つの振幅制御手段5A,5Bは、対応する波形演算手段6A,6Bから出力される波形情報の振幅をそれぞれの所望のレベルで出力できるように振幅情報(乗算係数)をそれぞれの波形演算手段6A,6Bに出力している。各振幅制御手段5A,5Bは、アドレス生成部4bと同様に、前段レジスタ13と後段レジスタ14の2つのレジスタを備えており、ダブルバッファ構造を採用している。前段レジスタ13には今回使用される振幅比の数値が格納され、後段レジスタ14には次回使用される振幅比の数値が格納される。後段レジスタ14には、設定入力手段2からの設定情報に基づいて制御部4aが演算した振幅情報(乗算係数)が格納される。そして、制御部4aから振幅変更を示す情報を含むトリガ信号が入力されたときに、後段レジスタ14内の振幅情報(乗算係数)が前段レジスタ13に受け渡される。
【0035】
図2に示す2つの波形演算手段6A,6Bは、対応する波形情報記憶手段3A,3Bからの波形情報を演算している。各波形演算手段6A,6Bは、例えば乗算器で構成されており、対応する波形情報記憶手段3A,3Bからの波形情報を振幅制御手段5A,5Bからの振幅情報(乗算係数)で乗算し、各波形情報の出力タイミングを合わせて合成演算手段7に入力している。なお、2つの波形演算手段6A,6Bは、対応する振幅制御手段5A,5Bからの振幅情報(乗算係数)の入力が無い場合に、各波形情報記憶手段3A,3Bからの波形情報がそのまま出力タイミングが合った状態で合成演算手段7に入力される。
【0036】
合成演算手段7は、各波形演算手段6A,6Bからの波形情報を合成している。合成演算手段7は、例えば加算器で構成されており、各波形演算手段6A,6Bからの波形情報を加算して出力している。この合成演算手段7から出力されたデジタルの波形情報は、D/Aコンバータ15によりアナログ信号に変換された後、後段の低域フィルタ(LPF)16と直交変調器17などを含む周波数変換部により周波数変換されたアナログ信号として例えばアンプ等の測定対象に入力される。
【0037】
表示手段8は、図4や図5に示すように、実際に生成する波形の情報を、設定入力手段2からの設定情報に基づいて波形制御手段4の制御によりモニタ表示している。図4は信号波形Aと妨害波形(雑音)Bとが重畳されて出力される波形の表示状態と各種設定情報の表示状態を示している。また、図5は信号波形Aと信号波形Bとが所定周波数間隔faを空けて出力される波形の表示状態と各種設定情報の表示状態を示している。なお、この表示手段8は、合成演算手段8から出力される波形情報や直交変調器17から出力される実際の波形を表示するようにしても良い。
【0038】
次に、本例の波形生成装置の第2形態について図3を参照しながら説明する。なお、上述した第1形態と同一の構成要素には同一番号を付し、その説明を省略する。
【0039】
この第2形態の波形生成装置1B(1)では、波形制御手段4が制御部4a、アドレス生成部4b(4bA,4bB)の他に、位相制御部4c(4cA,4cB)を備えている。図3に示すように、2つの位相制御部4cA,4cBは、対応する波形情報記憶手段3A,3Bと波形演算手段6A,6Bとの間に設けられる。その他の構成については第1形態と同一である。
【0040】
各位相制御部4cA,4cBは、2つの波形情報記憶手段3A,3Bからの波形情報の波形演算手段6A,6Bへの到達タイミングを調整するため、FIFO21(21A,21B)とインタポレータ22(21A,22B)とを備えている。
【0041】
FIFO21A,21Bは、異なるシステムの波形情報を加算するときに、波形情報記憶手段3A,3B毎に読み出しレートが異なる場合、もしくはバースト読み出しのタイミングが異なる場合に、インタポレータ22へ入力する波形情報のタイミングを調整している。
【0042】
インタポレータ22A,22Bは、2つの波形情報記憶手段3A,3Bからの波形情報が合成演算手段7に入る時点で2波のサンプリングレートが一致するように、2つの波形情報記憶手段3A,3Bのサンプリングレートの比率に応じて各波形情報記憶手段3A,3Bから対応する波形演算手段6A,6Bへの波形情報に補間処理を加えることで出力タイミングを合わせている。
【0043】
次に、上記のように構成される各形態の波形生成装置1A,1Bの共通動作について説明する。ここでは、波形演算手段6A,6Bが乗算器からなり、合成演算手段7が加算器からなる構成として説明する。また、波形情報記憶手段3A,3Bには、ユーザが作成した波形データ(波形情報)が予め外部端末装置から格納されているものとする。
【0044】
まず、ユーザが設定入力手段2からの設定により波形の振幅比のみ変更した場合の動作について説明する。この場合、設定入力手段2からのユーザ設定値をもとに波形制御手段4の制御部4aが演算を行って乗算係数を算出し、この算出した乗算係数を振幅制御手段5A,5B内の後段レジスタ14に振幅情報として格納する。このとき、アドレス生成部4bA,4bBの設定値は変わらないため、アドレス生成部4bA,4bBの後段レジスタ12には何も書き込まれない。ユーザが設定を実行したところで制御部4aが振幅変更の情報を含むトリガ信号を発生し、後段レジスタ14内の乗算係数が前段レジスタ13に反映される。このとき、トリガ信号に振幅比のみの変更であるという情報を持たせているので、振幅制御手段5A,5Bのみの変更が行われる。これにより、波形情報の読み込みを止めたり、再読み込みすることなく振幅値のみを変更することが可能となる。
【0045】
次に、ユーザが設定入力手段2からの設定により波形の位相のみ変更した場合の動作について説明する。この場合、設定入力手段2からのユーザ設定値をもとに波形制御手段4の制御部4aが演算を行って波形情報のアドレス値を算出し、この算出したアドレス値をアドレス生成部4bA,4bB内の後段レジスタ12に格納する。このとき、振幅制御手段5A,5Bの設定値は変わらないため、振幅制御手段5A,5Bの後段レジスタ14には何も書き込まれない。ユーザが設定を実行したところで制御部4aが位相変更の情報を含むトリガ信号を発生し、後段レジスタ12内のアドレスが前段レジスタ11に反映される。このとき、トリガ信号に位相のみの変更であるという情報を持たせているので、アドレス生成部4bA,4bBのみの変更が行われる。
【0046】
次に、ユーザが設定入力手段2からの設定により波形の振幅比と位相の両方を変更した場合の動作について説明する。この場合、アドレス生成部4bAが前段レジスタ11と後段レジスタ12を有し、振幅制御手段5A,5Bも同様に前段レジスタ13と後段レジスタ14を有するダブルバッファ構造となっている。そして、予め設定値(アドレス値、乗算係数)を後段レジスタ12,14内に格納し、制御部4aからの振幅変更および位相変更の情報を含むトリガ信号で一斉に後段レジスタ12内のアドレス値を前段レジスタ11に受け渡すとともに後段レジスタ14内の乗算係数を前段レジスタ13に受け渡す。これにより、個別に配置された回路(アドレス生成部4bA,4bB、振幅制御手段5A,5B)であっても同時に設定値を反映させることができる。その結果、ユーザから見た波形のリアルタイム制御が可能となる。
【0047】
ところで、2つの波形情報記憶手段3A,3Bから波形情報をバースト波を用いてワード単位でまとめて読み出す場合、2波の波形情報を読み出すスピードが異なってしまう。そこで、本例では、この問題を解消するために第2形態の波形生成装置1Bが採用される。この第2形態の波形生成装置1Bでは、波形情報の読み出し時のスピードの違いをFIFO21(21A,21B)で吸収させることにより2波の位相を設定値に保つことが可能になる。
【0048】
例えばFIFO21Aへの波形情報の書き込み速度が速く、FIFO21Bへの波形情報の書き込み速度が遅い場合、FIFO21Bの波形情報が空になったときにFIFO21Aの波形情報の読み出しを止める。そして、FIFO21Bに波形情報が入ってくると、FIFO21A,21B同時に波形情報の読み出しを開始する。
【0049】
また、インタポレータ22A,22Bでは、波形情報記憶手段3Aの波形情報のサンプリングレートと、波形情報記憶手段3Bの波形情報のサンプリングレートの最小公倍数のサンプリングレートになるようにインタポレータ22A,22Bの値が設定される。図3を参照しながら一例を説明すると、今、波形情報記憶手段3Aのサンプリングレートを100MHz、波形情報記憶手段3Bのサンプリングレートを50MHzとする。この場合、2つの波形情報の最小公倍数のサンプリングレートである100MHzになるようにインタポレータ22Aの値が1、インタポレータ22Bの値が2に設定される。
【0050】
これにより、波形情報記憶手段3Aの波形情報は、FIFO21Aに100MHzで送信される。その後、FIFO21Aからインタポレータ22Aに100MHzで送信される。さらにインタポレータ22Aから波形演算手段6Aへは100MHzで送信される。これに対し、波形情報記憶手段3Bの波形情報は、FIFO21Bに100MHzで送信される。その後、FIFO21Bの波形情報はインタポレータ22Bに50MHzで送信される。ここで波形情報記憶手段3Bの波形情報に対して波形情報記憶手段3Aの波形情報のサンプリングレートが2倍なので、インタポレータ22Bではサンプリングレートが2倍になるように補間処理される。この結果、インタポレータ22Bから波形演算手段6Bへは100MHzで送信される。さらにインタポレータ22Bから波形演算手段6Bへは100MHzで送信される。そして、各波形演算手段6A,6Bから合成演算手段7に入る時点で2つの波形情報のサンプリングレートが一致し、100MHz同士で2つの波形情報が加算される。
【0051】
このように、本例の波形生成装置によれば、振幅変更および/または位相変更を示す情報を含むトリガ信号によって各ブロック(アドレス生成部4b、振幅制御手段5、波形演算手段6)の制御を行い、アドレス生成部4bと振幅制御手段5とをダブルバッファ構造にすることによりリアルタイムで設定を反映させることが可能になる。
【0052】
そして、制御部4aから出すトリガ信号にアドレス生成部4bの設定を行うか、振幅制御手段5の設定を行うか、その両方の設定を行うか、3通りのデータを持たせているので、アドレス生成部4bと振幅制御手段5を個別に制御することが可能になる。その結果、振幅制御手段5から振幅比率の変更を行っても、波形情報のアドレスを再設定する必要がなくなり、波形の連続性を保つことが可能になる。
【0053】
FIFO21(例えば21A)中のデータが空になった時点でもう一方のFIFO21(例えば21B)を止める制御を行う構成によれば、異なるタイミングで読み出された2波の波形情報であっても乗算器からなる波形演算手段6に入っていく波形情報の相関とタイミングを常に合わせることができる。その結果、2波の位相差を常に一定値に保つことが可能になる。
【0054】
複数の波形情報記憶手段3(本例では2つ)を持ち、それぞれの波形情報の振幅比率を変更して演算する構成によれば、複数のキャリアの波形出力が可能になる。
【0055】
合成演算手段7にてデジタル演算を行う構成なので、温度や湿度などの周囲環境変化による誤差要因も少なく、演算する2波のレベル比を所望の比率に確度よく、かつ再現性のある波形生成を行うことができる。具体的には、可変確度0.01dB/ステップで振幅比率を連続的に可変することができる。しかも、合成演算手段7にてデジタル演算してからD/Aコンバータ15にてD/A変換する構成なので、アナログで加算させた時と比較してD/Aコンバータが少なくなる分だけ回路規模も小さくできる。
【0056】
合成演算手段7の後段のFIFO31は、2波の位相差を保つため、FIFO21が波形情報の読み出しを中止することにより生ずる波形出力の不連続を防止している。
【0057】
表示手段8には、生成する波形を設定データに基づいて表示されるので、設定に並行して生成波形をモニタすることができる。
【0058】
ところで、上述した各形態では、波形情報記憶手段3が2つの場合を例にとって説明したが、3つ以上の波形情報記憶手段3を備えた構成とすることもできる。この場合、位相制御部4cを備えた構成では、複数の波形情報記憶手段3のそれぞれのサンプリングレートに対して2のべき乗をかけることで一致する公倍数のサンプリングレートになるようにインタポレータ22の値が設定される。
【0059】
また、複数の波形情報記憶手段3の波形情報の読み出しアドレスが同じ場合には、一つのアドレス生成部4bにアドレス値を設定して波形情報の読み出しを制御することができる。さらに、複数の波形情報記憶手段3の波形情報の振幅比率が同じ場合には、一つの振幅制御手段5に振幅情報(乗算係数)を設定して波形生成することができる。
【0060】
さらに、位相制御部4cを備えた本例の波形生成装置において、複数の波形情報記憶手段3のサンプリングレートが同一で、合成演算手段7に入る時点のサンプリングレートが一致する場合には、位相制御部4cのインタポレータ22を省略した構成とすることができる。また、複数の波形情報記憶手段3からの波形情報をサンプル単位で読み出す場合には、位相制御部4cのFIFO21を省略した構成とすることができる。
【図面の簡単な説明】
【0061】
【図1】本発明に係る波形生成装置の概略構成を示すブロック図である。
【図2】本発明に係る波形生成装置の第1形態を示すブロック図である。
【図3】本発明に係る波形生成装置の第2形態を示すブロック図である。
【図4】本発明に係る波形生成装置の表示例を示す図である。
【図5】本発明に係る波形生成装置の表示例を示す図である。
【図6】特許文献1に開示される任意波形発生器のブロック図である。
【図7】特許文献2に開示される出力振幅調整回路の回路図である。
【符号の説明】
【0062】
1(1A,1B) 波形生成装置
2 設定入力手段
3(3A,3B) 波形情報記憶手段
4 波形制御手段
4a 制御部
4b(4bA,4bB) アドレス生成部
4c(4cA,4cB) 位相制御部
5(5A,5B) 振幅制御手段
6(6A,6B) 波形演算手段
7 合成演算手段
8 表示手段
11,13 前段レジスタ
12,14 後段レジスタ
15 D/Aコンバータ
16 LPF
17 直交変調器
21(21A,21B) FIFO
22(22A,22B) インタポレータ
31 FIFO

【特許請求の範囲】
【請求項1】
波形情報を記憶した複数の波形情報記憶手段(3)と、前記それぞれの波形情報記憶手段から波形情報を読み出す波形制御手段(4)と、該波形制御手段によって読み出された前記複数の波形情報記憶手段からの波形情報をそれぞれ演算する複数の波形演算手段(6)と、前記波形演算手段から出力された複数の波形情報を合成する合成演算手段(7)とを備えた波形生成装置において、
前記波形演算手段から出力される波形情報の振幅をそれぞれの所望のレベルで出力できるように振幅情報を前記それぞれの波形演算手段に出力する振幅制御手段(5)を有しており、
前記波形制御手段は、前記波形情報記憶手段から前記波形情報を読み出せるように制御するとともに、前記波形演算手段からの出力が所望の比率になるように前記振幅制御手段を制御することを特徴とする波形生成装置。
【請求項2】
前記波形制御手段(4)は、前記複数の波形情報記憶手段(3)の任意のアドレスを指示するアドレス生成部(4b)を有することを特徴とする請求項1記載の波形生成装置。
【請求項3】
前記アドレス生成部(4b)は、前記複数の波形情報記憶手段(3)毎に個々に有することを特徴とする請求項2記載の波形生成装置。
【請求項4】
前記波形制御手段(4)は、前記複数の波形情報記憶手段(3)からの波形情報を前記合成演算手段(7)に出力するタイミングを制御することを特徴とする請求項1〜3の何れかに記載の波形生成装置。
【請求項5】
前記波形制御手段(4)は、前記複数の波形情報記憶手段(3)からの波形情報の前記波形演算手段(6)への到達タイミングを調整する位相制御部(4c)を備えたことを特徴とする請求項1〜4の何れかに記載の波形生成装置。
【請求項6】
前記位相制御部(4c)は、前記複数の波形情報記憶手段(3)のサンプリングレートの比率に応じて前記波形演算手段(6)への出力タイミングを合わせることを特徴とする請求項5記載の波形生成装置。
【請求項7】
生成する波形の情報を設定データに基づいて表示する表示手段(8)を備えたことを特徴とする請求項1〜6の何れかに記載の波形生成装置。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate

【図7】
image rotate