説明

Fターム[2G087EE22]の内容

エンジンの試験 (2,110) | 試験装置 (412) | シミュレータ (66)

Fターム[2G087EE22]に分類される特許

1 - 20 / 66


【課題】内燃機関用制御装置のリアルタイムテスト方法を提供し、選択された機関状態量を、特に、第1のシミュレータ計算ユニットの第1のサンプリングステップ幅によって可能となるよりも高い頻度で利用できるようにする。また、こうした方法を実行できるシミュレータを提供する。
【解決手段】この課題は、冒頭に言及した内燃機関用制御装置のリアルタイムテスト方法において、シミュレータが、複数の機関状態量のうち少なくとも1つの所定の機関状態量を、機関部分モデルにより、第1のサンプリングステップ幅とは異なる第2のサンプリングステップ幅で計算することにより解決される。 (もっと読む)


【課題】限界点を探索する途中での結果を有効に活用し、効率のよい限界点探索を行う限界点探索装置及び方法を提供すること。
【解決手段】限界点探索装置10は、探査した限界値に対応する限界点によって境界を作成し、作成した境界を構成する限界点のうち、第1の限界点を挟んで隣り合うN個の限界点を求め(N=次元数(変化させる制御パラメータ数))、求めたN個の限界点によって形成される超平面と平行な超平面であって第1の限界点を含む超平面を、境界を構成する全ての限界点について求め、求めた超平面によって構成される大境界を作成する。そして、限界点探索装置10は、作成した大境界と、作成した境界との隙間である境界ギャップのうち、当該境界ギャップの大きさが最大の境界ギャップを算出し、算出した最大の境界ギャップの頂点であって大境界を構成する頂点の方向に向かって、探索始点から限界点の探索を行う。 (もっと読む)


【課題】計測の点数が異なる計画であっても、計画を評価することができる境界内計画評価装置及び方法を提供すること。
【解決手段】境界内計画評価装置10は、計測点の位置に仮想光源を配置し、運転可能領域の範囲内における任意の位置の仮想照度を示す仮想照度評価値を、運転可能領域の大きさと制御パラメータの数と配置された仮想光源とに基づいて算出し、運転可能領域の範囲内で仮想照度評価値を算出する位置を変え、変えた位置ごとに算出した仮想照度評価値のなかで、値が最も小さい最小仮想照度評価値を求める。 (もっと読む)


【課題】ガラスの重量を増すことなく、ガラスの強度を確保すること。
【解決手段】ピストン26と、ピストン26を収容するシリンダ27と、シリンダ27内に設けられる燃焼室25と、を少なくとも有する可視化エンジン2における燃焼室25内の状態を撮影する撮影装置1において、ピストン26の燃焼室25に対向する外壁に複数の窓部29a、29b、29cを有する可視化部29と、複数の窓部29a、29b、29cのそれぞれを透視して燃焼室25内を撮影する撮影部3と、複数の窓部29a、29b、29cのいずれからも撮影不可能な燃焼室25内の一部の領域の画像を生成する画像解析部4と、を有する撮影装置1とする。 (もっと読む)


【課題】ガラスの重量を増すことなく、ガラスの強度を確保すること。
【解決手段】ピストン26と、ピストン26を収容するシリンダ27と、シリンダ27内に設けられる燃焼室25と、を少なくとも有する可視化エンジン2における燃焼室25内の状態を撮影する撮影装置1において、ピストン26の燃焼室25に対向する外壁に窓部29a、29b、29cを有する可視化部29と、窓部29a、29b、29cのそれぞれに装着され、それぞれの透過波長が異なるフィルタF1、F2、F3と、フィルタF1、F2、F3を介し窓部29a、29b、29cのそれぞれを透視して燃焼室25内を撮影する撮影部3と、フィルタF1、F2、F3を介し窓部29a、29b、29cのそれぞれにより撮影されて得た画像から燃焼室25内の気体の成分の組成を複数の成分にわたり同時に解析する画像解析部4と、を有する撮影装置1とする。 (もっと読む)


【課題】 通過帯域幅が比較的広いバンドパスフィルタ処理を用いて抽出信号の十分なS/Nを確保し、空燃比センサの故障判定を短時間で精度良く行う空燃比制御装置を提供する。
【解決手段】 空燃比を周波数f1で振動させる空燃比振動制御を行い、空燃比振動制御実行中における検出当量比の今回値KACT(k)と、0.5次周波数成分を減衰させるように設定された離散遅延時間NIMB前の過去値KACT(k-NIMB)との差分DKACT(k)を算出し、差分DKACT(k)についてバンドパスフィルタ処理及び積算演算を行って周波数f1成分強度MPTf1を算出する。周波数f1成分強度MPTf1と、故障判定閾値MTPf1THとを比較し、その比較結果に応じて、空燃比センサの応答特性劣化故障を判定する。 (もっと読む)


【課題】大きな減衰効果を得ることのできる動力伝達用シャフトを提供する
【解決手段】動力伝達用シャフト50は、動力を伝達するシャフト本体52と、シャフト本体52と中心線が一致するように配置された多重円筒部材54と、を備え、多重の円筒部材54は、その片側の端部のみがシャフト本体52の一方側の端部に一体的に取り付けられた第1の円筒部材56と、その片側の端部のみがシャフト本体52の他方側の端部に一体的に取り付けられた第2の円筒部材58とを有し、第1の円筒部材56と第2の円筒部材58との間には粘性体の封入空間Y1〜Y3が円筒状に形成される。 (もっと読む)


【課題】過渡状態におけるエンジンの性能を客観的に、精度よく推定することができる過渡走行シミュレーション装置及び方法を提供すること。
【解決手段】過渡走行シミュレーション装置10は、走行頻度表データd5と、走行頻度表データd5に記憶された加速時間の頻度のうち所定の頻度より高い頻度の加速時間について計測した過渡駆動データd4から抽出された最適解を記憶する最適解データd6とを備える。そして、過渡走行シミュレーション装置10は、最適解データd6から一組の最適解を取得し、取得した一組の最適解に基づいて近似モデルを作成し、作成した近似モデルと、走行モードデータd2とによって、エンジンの性能を算出し、所定の規定値を満たすか否かを判定する。そして、所定の規定値を満たすと判定した最適解に対応するマップを作成する。 (もっと読む)


【課題】実験車のエンジンの筒内圧を計測せずに、エンジンの起振力を推定することのできるエンジンの起振力推定方法を提供することにある。
【解決手段】エンジン機構モデルを作成し、機構モデルに諸元値(特性)を入力して、機構モデルのエンジンの共振周波数を計算する。次に、実験車のエンジンの共振周波数と機構モデルのエンジンの共振周波数とを比較して、共振周波数が一致するように機構モデルのエンジンの諸元値(特性)を調整する。機構モデルを動作させるためのモデル波形を作成し、機構モデルにモデル波形を与えて機構モデルにおけるエンジンの振動の時系列データを計算する。次に、計算した振動の時系列データと、実験車のエンジンの振動の時系列データとを比較して、時系列データが一致するように機構モデルのエンジンの筒内圧を調整する。 (もっと読む)


【課題】 サイクル数に対するエンジン状態の変化を観察することができるエンジン計測装置を提供する。
【解決手段】 エンジン100に取り付けられたクランク角センサ32からクランク角情報を順次取得して、計測時間とともに記憶部5に記憶させるクランク角情報取得部4aと、エンジン100に取り付けられ、エンジン状態を計測する計測センサ36からセンサ値情報を順次取得して、計測時間とともに記憶部5に記憶させるセンサ値情報取得部4bと、記憶部5に記憶されたクランク角情報及びセンサ値情報に基づいて、多数のサイクルの内から選択された任意の1サイクルでのクランク角とセンサ値との関係を示す2次元グラフを表示する表示制御部4cとを備えるエンジン計測装置10であって、表示制御部4cは、1サイクルでのクランク角とセンサ値との関係を示す2次元グラフを、サイクル数を軸として3次元グラフで表示することが可能とする。 (もっと読む)


【課題】車両エンジンの性能を最適化するための方法およびシステムを提供すること。
【解決手段】方法は、第1のエンジン制御パラメータに対する初期値を、車両エンジンの1つまたは複数の検出された動作条件に基づいて確定するステップと、エンジン性能変数の値を確定するステップと、エンジン性能変数の確定値を人為的に摂動させるステップとを含む。次いで、第1のエンジン制御パラメータに対する初期値が、摂動されたエンジン性能変数に基づいて調整され、エンジン性能変数が目標のエンジン性能変数に近づけられる。車両エンジンの動作が、第1のエンジン制御パラメータに対する調整された初期値に基づいて制御される。これらの活動が、エンジン性能変数が目標のエンジン性能変数に接近するまで繰り返される。 (もっと読む)


【課題】実際の車両と同等の環境下にある排気浄化触媒の性能を評価できる排気浄化触媒用のシミュレーション装置を提供すること。
【解決手段】シミュレーション装置1は、所定の入力データから排気浄化触媒の浄化性能を評価するための排気の流速、濃度、触媒温度、及び排気温度などの評価パラメータの値を算出する。このシミュレーション装置1は、排気を構成するガス成分の輸送及び排気浄化触媒における熱の移動を模した物理モデルに基づいて評価パラメータの値を算出する物理演算モジュール31と、排気浄化触媒におけるガス成分に対して進行する触媒反応を模した触媒反応モデルに基づいて評価パラメータの値を算出する触媒反応演算モジュール32とで構成された演算装置3を備える。触媒反応モデルは、特定のガス成分対で進行する化学反応を模した化学反応モデルと、触媒表面への特定のガス成分の吸着反応を模した成分吸着モデルと、を含む。 (もっと読む)


【課題】安全性を確保でき、且つ、試験前の準備作業を簡単に行うことのできるエンジン試験方法および装置を提供する。
【解決手段】エンジン試験装置10は、試験対象であるエンジン12に負荷を与えるダイナモメータ14と、エンジン12及びダイナモメータ14を制御する制御装置20とを備える。制御装置20は、制御指令値を出力する制御器40と、エンジン12及びダイナモメータ14を含む実機部をモデル化したベンチモデルを有し、ベンチモデルに制御指令値を入力してシミュレーションを実行するシミュレーション部42と、シミュレーションの結果に基づいて制御器40からの制御指令値の出力先をシミュレーション部42と実機部とで切り替える切替手段44を備える。切替手段44は、シミュレーション部42のシミュレーションの結果が所定の範囲内である場合に、制御指令値の出力先をシミュレーション部42から実機部に切り替える。 (もっと読む)


【課題】応答性とロバスト性の高い制御を行うことのできるエンジン試験方法及び装置を提供する。
【解決手段】エンジン試験装置10は、エンジン12に負荷を与えるダイナモメータ14と、エンジン12とダイナモメータ14にそれぞれ制御指令値を与える制御装置20と、を備える。制御装置20のシミュレーション部42は、エンジン12及びダイナモメータ16を含む実機部をモデル化したベンチモデルを有し、ベンチモデルに制御指令値を入力してシミュレーションを行う。制御装置20の制御器40はシミュレーションの結果を入力して制御指令値を決定し、シミュレーション部42と実機部に出力する。 (もっと読む)


【課題】多くの制御パラメータによる複雑な凸境界であっても、妥当な時間内に、十分な数の計測点を算出することができる計測点算出装置及び方法を提供すること。
【解決手段】計測点算出装置10は、乱数を発生する乱数発生部21を有する。そして、計測点算出装置10は、制御可能領域の範囲内に、第1計測点を決定し、乱数発生部21によって発生させた乱数に基づいて制御可能領域の範囲内に仮計測点を算出し、決定された第1計測点から、算出された仮計測点の方向へ結んだ直線の延長線と、制御可能領域との交点を算出する。次に、計測点算出装置10は、乱数発生手段によって発生させた乱数に基づいて、交点と結んだ直線上の点であって仮計測点と交点との間の第2計測点を算出する。そして、計測点算出装置10は、算出した第2計測点を第1計測点として、仮計測点の算出と、交点の算出と、第2計測点の算出とを繰り返し、計測点を算出する。 (もっと読む)


【課題】制御パラメータの限界値を迅速に探査し、制御可能領域を効率よく生成することができる限界値探査装置及び方法を提供すること。
【解決手段】限界値探査装置10は、エンジンの動作状態を測定し、測定した結果がエンジンの所定の動作条件を超えるまで、探査始点から、探査方向に制御パラメータの値を変化させて、制御パラメータの限界値を探査し、境界領域を生成する。次に、限界値探査装置10は、生成した境界領域を構成する限界点のうち当該境界領域を生成するときに新たに探査した第1の限界点と、当該第1の限界点に隣り合う第2の限界点との間の安定点であって当該境界領域上の安定点を決定し、第1の限界点を探査したときの探査始点から当該決定した安定点への方向を探査方向とし、安定点を探査始点として、限界値を探査し、探査した限界点と、当該境界領域を構成する限界点とによって境界領域を生成する。 (もっと読む)


【課題】加速状態において所定の基準を満たしながら、トレードオフの関係となる最適なエンジンの出力を発揮することができるエンジンの設定値を選択することを目的とする。
【解決手段】エンジン2の制御要素に係る設定値に従って制御駆動されたことにより出力され、互いにトレードオフの関係となる複数種の出力要素に係る出力値の組み合わせを、所定の時間加速させた状態で設定値を複数変更して取得するデータ取得部121と、出力値の組み合わせと設定値とを対応付ける対応付け部123と、対応付け部123により対応付けられた複数の出力値の組み合わせに基づいて、他の出力値の組み合わせに優越しない出力値の組み合わせである最適解を選択する最適解選択部126と、を備える。 (もっと読む)


【課題】応答性が良く、エンジンの温度変動を極力抑えることのできるエンジンベンチを提供する。
【解決手段】エンジンベンチ10は、エンジン12に接続されて負荷を与えるダイナモメータ20と、エンジン12とダイナモメータ20を制御するエンジン・ダイナモ制御部30と、エンジン12を冷却する冷却装置60と、冷却装置60を操作することによってエンジン12の温度を制御する温度制御装置70と、運転パターンとエンジンモデルに基づいてシミュレーションを実行し、その結果に基づいてエンジン・ダイナモ制御部30を操作する運転管理部40とを備える。温度制御装置70は、シミュレーションの結果を用いてエンジン12の発熱量を予測し、冷却装置60の操作量と操作時間差を決定するとともに、冷却装置を、エンジン・ダイナモ制御部30の操作によりも前記操作時間差の分だけ先に前記操作量で操作する。 (もっと読む)


【課題】この発明は、簡単な装置構成により信頼性の高いシミュレーションが可能な単体作動シミュレータ、およびシミュレーションシステムを提供することを課題とする。
【解決手段】シミュレーションシステム100は、エンジンECU1を単体でシミュレーションすることができる単体作動シミュレータ10を備えている。単体作動シミュレータ10は、開発用シミュレータ2から取得した当該ECUの開発データの一部を、サービスツール4を用いて取得した不具合発生時の制御データに書き換えて、エンジンECU1に入力する。そして、データモニタ装置6で、エンジンECU1の演算結果をモニタする。 (もっと読む)


【課題】解析空間中に置かれた移動物体周りの流れ解析を、境界埋め込み法にて解析する場合に、各計算セルの体積と各計算セルを占める物体体積の比である物体体積分率と、移動物体が流れに与える影響を反映させるため相互作用力を計算する必要がある。これらの計算の精度向上と負荷低減の両立が困難であった。
【解決手段】計算セル4100を、物体表面4200との関係から、計算セル全体が物体の外部に位置する計算セル(以下、外部セル)4107,計算セル全体が物体内部に含まれる計算セル(以下、内部セル)4108,計算セル内部に物体境界を含む計算セル(境界面上セル)4106の3種類に分類する。境界面上セル4106に分類される計算セルにおける物体体積分率及び相互作用力を、物体内部に散らばった仮想粒子の体積,移動速度に基づき計算する。 (もっと読む)


1 - 20 / 66