説明

Fターム[4G035AA01]の内容

溶解、混合、フローミキサー (10,634) | 溶解 (1,074) | 気体の溶解(炭酸水の製造は除く) (734)

Fターム[4G035AA01]の下位に属するFターム

Fターム[4G035AA01]に分類される特許

101 - 120 / 625


【課題】微細気泡の発生と電気分解とを単一の装置で行うことができる超微細気泡発生装置を提供する。
【解決手段】超微細気泡発生装置1は、導電性を有する液体を流通させるための流通管2と、流通管の途中に設けた気泡発生媒体3A・3Bと、気泡発生媒体3A・3Bへ気体を圧送するための圧縮機5・5と、を具備する超微細気泡発生装置1であって、気泡発生媒体3A・3Bは、導電性を有する高密度複合体で構成され、気泡発生媒体3A・3Bには電圧が印加される。 (もっと読む)


【課題】簡便な構成により酸素水の溶存酸素濃度を高めることのできる酸素水生成装置を提供すること。
【解決手段】給水路2を備え、この給水路の途中にその上流側から下流側にかけて吸気部5、圧送部6、気体溶解部7が順に設けられ、給水路の下流端に吐水部3が設けられ、吸気部から空気Aを導入し、気体溶解部において供給される水と空気を加圧下に混合し、空気中の酸素を水に溶解させて酸素水14を生成し、この酸素水を吐水部から供給先へ供給する酸素水生成装置1であって、気体溶解部から出水される酸素水の一部を、気体溶解部における空気と水を混合する気液混合部側に戻し、戻した酸素水を気液混合部に再度供給可能とした還流路15が給水路に分岐して設けられている。 (もっと読む)


【課題】ナノバブル水(ゼータ高電位水)の生成に適用される気体溶解液生成装置を提供する。
【解決手段】気体溶解液生成装置は、気体と液体とを混合する気液混合部101と、この気体を含む液体が流入し、この液体中に含まれる気体をマイクロバブルに変換するマイクロバブル生成部104と、このマイクロバブルを含む液体が流入し、この液体中に含まれるマイクロバブルをナノバブルに変換するナノバブル生成部105と、このナノバブルを含む液体を、気液混合部、マイクロバブル生成部、及びナノバブル生成部を介して循環させることで、この液体中の気体溶解濃度を高める循環機構201とを備える。 (もっと読む)


【課題】高濃度及び高処理速度でオゾン水を生成する気液接触膜の提供。
【解決手段】細孔を有するオゾン水生成用気液接触膜であって、該細孔の細孔ピッチが30〜1000nmであり、該細孔の細孔径が10〜300nmであり、該気液接触膜の厚さが30〜1000nmであり、かつ該細孔の孔径分布における標準偏差が平均値の30%以下である、オゾン水生成用気液接触膜。 (もっと読む)



【課題】現像廃液の排出量を削減することができ、廃液の処理過程で生じる水を容易に再利用できる平版印刷版現像廃液削減装置を提供する。
【解決手段】
平版印刷版現像廃液削減装置1は消泡剤を貯蔵する消泡剤タンク40と、ポジ型の平版印刷版現像廃液を貯蔵する処理液タンク10と、消泡剤タンク40と処理液タンク10と接続され、廃液を加熱・濃縮するための加熱コイル60を備える第1容器20と、第1容器20からの蒸発した水蒸気を冷却・凝縮するための冷却コイル64を備える第2容器22と、ヒートポンプシステムを構成するよう加熱コイル60と冷却コイル64とに接続された圧縮機61及びキャピラリー管68と、第1容器20と第2容器22を減圧するための、水流タンク80、アスピレーター81及び水流ポンプ82を備える減圧手段と、第2容器22で冷却・凝縮された水を回収し、水流タンク80と接続された洗浄水タンク90と、を備える。 (もっと読む)


【課題】発泡を抑制しつつ少ないエネルギーで処理液中にガスを溶け込ませることを可能とするガス供給装置を提供する。
【解決手段】処理液S中にガスを溶存させるガス供給装置1Aであって、処理液Sを貯留する貯留槽と、処理液Sの内部に内周面の一部が露出するように浸漬された第1撹拌器12aと、第1撹拌器12aの内周面側に挿入され、処理液Sの内部に外周面の一部を除いて浸漬された第2撹拌器12bと、第1撹拌器12aおよび第2撹拌器12bを、第1撹拌器12aの長手方向と平行な第1回転軸F、および第2撹拌器12bの長手方向と平行な第2回転軸Fの周りに回転させる駆動装置14と、を有する。 (もっと読む)


【課題】従来から高濃度酸素溶解水の製造は種々の方法で行われてきたが、いずれも得られる濃度が不十分であったり、コスト的に実現が難しかったりした。本発明は、高濃度酸素溶解水を簡単かつ安価で製造できる方法や装置を提供する。
【解決手段】酸素含有気泡を有する2以上の旋回流34を衝突させることにより前記気泡をより微細化するとともに、気泡中の酸素を前記水流中に大量に溶解させる。両水流は両水流の流速の和に等しい速度で衝突するが、その衝撃は単独の水流が静止面に衝突する際の数倍から十数倍に達し、各水流に最大限の衝撃が与えられ、水流中の気泡が破壊されて微細化し、気泡中の酸素の水流中への溶解が促進される。 (もっと読む)


【課題】バイオリアクタに用いられる装置であって、気相部に含まれるガス成分を、発泡を抑制しつつ少ないエネルギーで処理液中に溶け込ませることを可能とするガス供給装置を提供する。
【解決手段】液体中にガスを溶存させるガス供給装置1Aであって、処理液Sを貯留する貯留槽10と、処理液Sの内部に外周面の一部を除いて浸漬された撹拌器12Aと、撹拌器12Aを撹拌器12Aの長手方向と平行な回転軸Fの周りに回転させる駆動装置14と、を有することを特徴とする。 (もっと読む)


【課題】簡単な構成で水中の溶存酸素濃度を増加させると共に、増加した溶存酸素濃度を長時間に亘って維持することができる溶存酸素濃度増加装置を提供することを目的とする。
【解決手段】容器1内もしくは池等の水を汲み上げる自吸式ポンプ2と、この汲み上げられた水に高濃度の酸素を供給する酸素窒素分離器4と、この酸素窒素分離器4に接続されて気体を導入するコンプレッサー5と、自吸式ポンプ2で汲み上げられ酸素濃度の高くなった酸素水を容器内もしくは池等に注入するパイプ3の先端に設けられたマイクロバブル発生ノズル7とを備え、このマイクロバブル発生ノズル7は、前記酸素水の流入部8とこれよりも径が小さい絞り部9と、この絞り部9の先端に流出する酸素水を渦流状態に撹拌しながら放出する略球形貯留部10を配設して構成し、高濃度酸素を混入した水をマイクロバブル発生ノズル7で前記容器1もしくは池等の水中に還元して高濃度に酸素を溶存させるように構成したものである。 (もっと読む)


【課題】浴槽などの設置部位の左勝手および右勝手の両方に対応して取付けを可能にした溶解タンクを提供すること。
【解決手段】溶解タンク1では、単数または複数の仕切り壁7、8、9によって区分されて溶解タンク1の内部に偶数個の室10、11、12、13が形成され、各室は、隣り合う室と連通し、流入口3から流出口4に至る水の流路の略中央部に一つの仕切り壁8が配置され、この仕切り壁を中心として偶数個の室が左右対称に配置されているとともに、流入口と流出口が左右対称に配置されている。 (もっと読む)


【課題】騒音や振動が生じにくい溶解タンクを提供する。
【解決手段】気体を混合した液体の流入口と、前記液体の流出口と、一端が前記流入口に通じると共に他端が前記流出口に通じる螺旋状の溶解流路27とを備える。 (もっと読む)


【課題】液体とII価III価鉄塩を含む粒体とを接触させる処理、および、液体中に微小気泡を生成する処理、の2つの処理それぞれ単独では得られない大きな効果を得る。
【解決手段】 液体とII価III価鉄塩を含む粒体とを接触させた後に該液体を吐出するII価III価鉄塩を含む粒体保持容器、および、液体中に微小気泡を生成し該液体を吐出する微小気泡発生器(マイクロバブルまたはナノバブル発生器)とを組み合わせ、両者の内部に液体を順次通過させるようにした。 (もっと読む)


【課題】少ないエネルギーで強力な循環流を発生し酸素を液体中に効率よく溶解させることができる気液混合循環流発生装置を提供すること。
【解決手段】液体が流通する筒状本体の内周面に少なくとも1条の螺旋状の溝を設け、この筒状本体の中間部分には断面径が狭められた絞り機構を設ける。絞り機構の外周面には単一又は2分割された加圧気体導入室を設け、この加圧気体導入室の気体を筒状本体の中心部に向かって吹き込み軸流の発生に寄与するように第1の気体噴出口を絞り機構部分に穿設し、同様に加圧気体導入室の気体を螺旋状溝に向かって吹き込み旋回流の発生に寄与するように第2の気体噴出口を絞り機構部分に穿設する。 (もっと読む)


【課題】 所定の水素ガス溶存量を保持できるウォータディスペンサを提供する。
【解決手段】 ガロンから供給される飲料水を溜める貯留タンクと、貯留タンクから補充される飲料水を用いて水素ガスを生成する水素ガス発生器と、貯留タンクから補充される飲料水に水素ガス生成器から供給される水素ガスを溶解させて水素ガスが溶存する水素水を生成する水素ガス溶解槽と、前記水素ガスと前記飲料水とを混合して前記水素ガス溶解槽へ送ると共に前記水素ガス溶解槽で生成した前記水素水を前記貯留タンクへ戻すポンプ機構とを備え、水素ガスが溶存する所定の酸化還元電位を有する飲料水を常時貯留タンクより供給する。 (もっと読む)


【課題】流量が大きく変動する超純水の比抵抗値を、所望の値に簡便に調整し安定させることができる超純水の比抵抗調整方法、及び超純水処理装置を提供する。
【解決手段】超純水に炭酸ガスを溶解して比抵抗値を調整する際に、供給する炭酸ガス圧力を調整してモータ駆動ロータリーバルブへ供給し、該モータ駆動ロータリーバルブの回転数に応じた炭酸ガスを気液接触室へ供給し、気液接触室から放出する超純水の比抵抗値を測定し、測定した比抵抗値をフィ−ドバックして前記モータ駆動ロータリーバルブの回転数を調整し、炭酸ガス溶解後の超純水比抵抗値を0.2〜1.0MΩ・cmの範囲で一定にすることを特徴とする超純水の比抵抗調整方法、及び当該比抵抗調整方法に好適な超純水処理装置である。 (もっと読む)


【課題】超純水流量が変化したとき、従来よりも迅速かつ簡便に超純水の比抵抗値を所望の値に安定させることができる超純水の比抵抗調整方法、及び超純水処理装置を提供する。
【解決手段】炭酸ガスを超純水中に溶解させるとき超純水流量を測定し、超純水流量の変化が一定値以上の場合には、超純水流量と炭酸ガス量と比抵抗値の相関について予めインプットされたデ−タに基づいた量の炭酸ガスを超純水へ供給し、その後一定時間経過後には前記比抵抗計による測定値をもとに当該比抵抗値が0.2〜1.0MΩ・cmの範囲で一定となるように、フィードバック制御する超純水の比抵抗調整方法及び当該方法に好適な超純水処理装置である。 (もっと読む)


【課題】得られるラドン含有水におけるラドンの溶解度をより高めることのできるラドン含有水製造方法を提供する。
【解決手段】ラドンを含有するラドン含有ガスGを原料水Wに接触させ、前記ラドンを原料水W中へ溶解させることにより、原料水Wをラドン含有水Wとするラドン含有水製造方法において、原料水Wを冷却してその温度を凝固点付近に保つとともに、ラドン含有ガスGからなる気泡Gを原料水W中に発生させるようにした。気泡Gを微細化して、ラドン含有ガスGと原料水Wの接触面積を増大させるとより好ましい。 (もっと読む)


【課題】オゾン水による効率的な洗浄を可能とする洗浄装置、及びそのような洗浄装置に用いることができるオゾン水生成装置を提供する。
【解決手段】電子部品洗浄装置1は、オゾンガスを濃縮するオゾンガス濃縮部30と、オゾンガス濃縮部30で得られた濃縮オゾンガスを水に溶解させてオゾン水を得るオゾンガス溶解部50と、オゾンガス溶解部50で得られたオゾン水で電子部品を洗浄する洗浄部70と、を備えることを特徴とする。 (もっと読む)


【課題】コンパクトでシンプルな構成で、効率的にマイクロバブル等の微細なバブルを液体中に発生させることができ、同時に弁体により流路を遮断するバルブの機能を兼ね備えた装置を提供する。
【解決手段】本発明のバブル発生用バルブ装置1は、液体入口4からの流路方向に沿ってテーパ状に縮径するベンチュリー管6が設けられたバルブ本体2と、ベンチュリー管6の後端部8に対して移動自在に設けられたニードル状の弁体10とを備え、ベンチュリー管6の後端部8と弁体10の先端部11との間で、弁体10の移動により間隙13の幅を調整可能なノズル部14が構成され、液体入口4から液体を流入させてベンチュリー管6を通過させた後、ベンチュリー管6の後端部8におけるノズル部14を通過させることにより液体中にバブルを発生させ、次いで液体入口4からの流路方向とは垂直方向の液体出口5よりバブルが発生した液体を吐出させるようにしたことを特徴とする。 (もっと読む)


101 - 120 / 625