説明

Fターム[4G035AA01]の内容

溶解、混合、フローミキサー (10,634) | 溶解 (1,074) | 気体の溶解(炭酸水の製造は除く) (734)

Fターム[4G035AA01]の下位に属するFターム

Fターム[4G035AA01]に分類される特許

21 - 40 / 625


【課題】円筒形樹脂製の主要な部材に穴を開けたり配管を溶接する必要をなくす工夫をすることで製造にかかる手間やコストを抑えることができる気液分離タンクを提供する。
【解決手段】円筒形樹脂製の本体円筒容器31の上側の開口部に上側円筒部34を連続的に取り付ける。この上側円筒部34は、気液混合流体を接線方向から上記本体円筒容器31内に導入する気液混合流体入口32を側面に有するとともに、液中から分離された気体を排出する気体出口33を上端面に有する。上記本体円筒容器31の下側の開口部に液取出口35を有する底板部36を設ける。上記底板部36の液取出口35上に通液間隙37を介してバッファプレート38を設ける。 (もっと読む)


【課題】コンパクトな溶解分離タンクおよび気液混合溶解装置を提供する。
【解決手段】溶解分離タンク11は、水平方向を長手方向とする横置き筒形のタンク本体12を備えている。タンク本体12の長手方向一側部(図1右側部)上には、加圧供給した気液混合流体Aをタンク本体12の長手方向一側部内に導入する気液混合流体圧入口部21を設ける。タンク本体12の長手方向一側部内から長手方向他側部(図1左側部)内に向かって、液中に気体を溶解させる溶解槽部27を設ける。タンク本体12の長手方向他側部内にタンク本体12の底部から中位まで立ち上げるように気液分離用の気液分離板28を設ける。タンク本体12の長手方向他側部の端面板15の下部には、タンク本体12の下方に分離された液を取り出す液取出口31を設け、端面板15の上部には、タンク本体12の上方に分離された気体を外部へ排出する気体抜き口32を設ける。 (もっと読む)


【課題】容器内に入れたクリームやジェル等の被撹拌液状物(粘性液状物)に炭酸ガスを簡単且つ効率的に溶解させ、容器内のクリームやジェル等の被撹拌液状物(粘性液状物)に炭酸ガスの気泡を均一に内在させることができるようにする。
【解決手段】被撹拌液状物(粘性液状物)4及び複数の撹拌ボール5が容器2の内部に空間24を生じるように入れられ、ガス導入ポート7に炭酸ガス供給路8が接続された状態で且つ加圧された炭酸ガス28が供給された状態で振り動かされると、複数の撹拌ボール5で粘性液状物4と炭酸ガス28を撹拌・混合し、粘性液状物4に炭酸ガス28を溶解させ、粘性液状物4に炭酸ガス(28)の気泡30を内在させることができるようになっている。炭酸ガス28の気泡30が内在する粘性液状物4を内容物取り出し弁27から外部へ取り出すことができるようになっている。 (もっと読む)


【課題】所望の気体が高濃度にて溶解した液体を効率良く生成する。
【解決手段】水耕栽培装置では、空気が充填された混合容器32内に液体噴射ノズル331から培養液91が噴射され、加圧環境下にて培養液91に空気が溶解する。そして、所定時間後または所定量噴射後に培養液91の噴射が停止される。酸素は窒素に比べて培養液91に溶けやすいため、混合容器32内の空気は通常の大気よりも酸素の割合が少ない状態となっている。続いて、気体供給部34により混合容器32内への空気の供給が開始され、混合容器32内に残存する空気および培養液91が排出される。混合容器32内には新たな空気が充填され、混合容器32内の酸素濃度は通常の大気と同等となる。水耕栽培装置では、混合容器32から排出された培養液91を液体噴射ノズル331へと戻しつつ上述の工程が繰り返されることにより、溶存酸素濃度が高い培養液91を効率良く生成することができる。 (もっと読む)


【課題】 ポンプや制御装置などを用いずに微生物の活動に必要な物質を与えてその活性の制御を可能とする。
【解決手段】非多孔性膜2を少なくとも一部に備える密封構造の容器4の中に微生物活性制御物質3を充填し、微生物活性制御物質3を容器4の非多孔性膜2の部分から非多孔性膜2の分子透過性能に支配される速度で容器4の周辺に供給し、容器の周辺の微生物の活性を制御する。微生物活性制御物質3は、微生物のエネルギー源となる電子供与体として機能する物質、酸性物質、塩基性物質、無機塩類、酸素放出物質及び酸素吸収物質のうちの少なくとも1種以上であり、酸性物質と塩基性物質、酸素放出物質と酸素吸収物質の組み合わせは除かれる。 (もっと読む)


【課題】水耕栽培装置において液体の温度を容易に制御するとともに液体の温度を容易に均一とする。
【解決手段】水耕栽培装置1は、加圧溶解部31、加圧溶解部31からの培養液91を貯溜する定植水槽2、定植水槽2内の培養液91の温度を測定する温度センサ6、および、温度センサ6からの出力に基づいて加圧溶解部31の稼動率を変更する制御部7を備える。加圧溶解部31では、加圧環境下にて培養液91を混合容器32内へと噴射することにより培養液91への空気の加圧溶解が行われ、培養液91の温度が上昇する。定植水槽2内の培養液91の温度が設定温度よりも低い場合、加圧溶解部31が連続的に稼働され、設定温度よりも高い場合、加圧溶解部31が間欠的に稼働される。このように、気体溶解部3の稼動率が変更されることにより、培養液91の温度を容易に制御することができるとともに、培養液91の温度を容易に均一とすることができる。 (もっと読む)


【課題】オゾン水や酸素水などを簡易に製造できるマイクロバブル化装置を提供する。
【解決手段】オゾン水を製造するマイクロバブル化装置M1は、酸素ボンベ5からの酸素ガスを流速制御して供給する速度制御弁1と、速度制御弁1により供給された酸素ガスからオゾンガスを発生させるオゾン発生器2と、オゾン発生器2により発生したオゾンガスを移送する移送管3と、移送管3により移送されたオゾンガスを導入してマイクロバブル化した気泡を発生させる気泡発生器4を備えてなる。また、気泡発生器4には、容器内にオゾン吸蔵体8が充填されているとともに、オゾン吸蔵体8に吸着させて貯蔵したオゾンガスを容器外へと通過させ、かつ、容器外の液体11を容器内へと通過させない大きさの微小孔9が間隔を隔てて複数個設けられている。 (もっと読む)


【課題】一般家庭用に小型化し、長時間にわたって高いオゾン濃度を保つ等張オゾン水を簡単に製造できる等張オゾン水製造装置を提供する。
【解決手段】本発明の等張オゾン水製造装置Mは、水に食塩を溶解させた0.9%食塩水からなる溶液を連続して定量移送する溶液移送部1と、携帯用の酸素ボンベ21から速度制御された酸素ガスを供給してオゾン発生器24でオゾンガスを発生させるオゾンガス発生部2と、溶液移送部1から定量移送された溶液とオゾンガス発生部2で発生させたオゾンガスとをスタティックミキサ31により混合して気液混合水を生成する気液混合部3と、気液混合部3で生成した気液混合水を溶液に溶解しない廃ガスと溶液にオゾンを溶解させた等張オゾン水とに分離する気液分離部4と、気液分離部4で分離された廃ガスに含まれる残留オゾンを触媒により酸素に分解する廃ガス処理部5と、気液分離部4で分離された等張オゾン水を装置外部に排出する等張オゾン水排出部6と、を備えて構成されている。 (もっと読む)


【課題】十分な量の気体を液体に溶解させた気体溶存液を安定的に製造し続ける。
【解決手段】気液溶解装置1は、内部の整流板11〜15により、容器内にカーテン状の水幕を形成し、液体が気体に両面から挟まれた状態で広い面積にて接触し合って落下する状態を形成する。また、制御ボックス50内の制御回路60には、電源供給ユニットPS、液面センサ31、タイマーT1〜T3、リレーX1,X2等が組み込まれ、ガス供給用電磁弁32は、液面高さが上限値H1を越えたとき開放させ、下限値H2になった後一定時間経過したときに閉じる。そして、24時間タイマーT1の設定時刻になると、ガス抜きタイマーT3を作動させ、一定時間ガス抜き用リレーX2を作動させてガス抜き用電磁弁33を開放する。このとき、ガス供給用リレーX1は強制的に作動が制限される。 (もっと読む)


【課題】溶存酸素濃度と温度を調整することができ、洗顔に適した酸素溶解水を生成して供給することのできる洗顔水供給装置を提供すること。
【解決手段】水を供給する給水路2と、水中に酸素を溶解させる溶解タンク3と、給水路から供給される水を加圧して溶解タンクの内部に送り込むポンプ4と、溶解タンクで生成した酸素溶解水を溶解タンクの外部に取り出す吐水路5とを備え、溶解タンクで生成される酸素溶解水中の酸素濃度を測定する酸素濃度測定手段11と、酸素溶解水の温度を調整する温度調整手段12と、酸素溶解水中の酸素濃度を減少させる酸素減少手段13と、酸素濃度測定手段が測定した酸素濃度に基づいて酸素減少手段の作動および停止を制御し、かつ温度調整手段の作動および停止を制御する制御手段16とが設けられている。 (もっと読む)


【課題】小規模河川などの汚染水域や浄化槽の放流水などの水中に高溶存酸素水を吹き込むことにより水質の改善を行なう、小型で高性能の水浄化装置を提供すること。
【解決手段】吸込口2と吐出口3を設けたケーシング1内に収められた一対のロータ5,5を駆動モータにより回転自在に設けた6葉式2軸容積回転ポンプ(p)と、その吸込口に接続される導入管45と、その吐出口に接続される排出管48と、その導入管に吐出口側を夫々接続されるルーツポンプ(w)及びルーツブロワ(b)を備え、ルーツポンプ(w)の吸込口側に汚染水などを吸い込む吸水管56を接続し、ルーツポンプ(w)とルーツブロワ(b)及び回転ポンプ(p)の連係運転により吸水管56から吸い込まれる汚染水と、ルーツブロワ(b)から供給される空気を当該回転ポンプの圧縮作用によって微細化し、微細気泡が含まれた高溶存酸素水を排出管48から汚染水域の水中に放出する。 (もっと読む)


【課題】生体適用液の特性を変えることなく、水素含有生体適用液を得ることができる選択的水素添加器具を提供する。
【解決手段】水素発生剤を必須成分とする水素発生系を、ガス透過膜または開閉式の弁を含む気液分離部を有する水素気泡形成体に収容し、該水素気泡形成体内において前記水素発生系と発生用水を反応させることを通じて、該水素気泡形成体内に発生した水素ガスを、前記気液分離部を介して、生体適用液に送り込むことで水素含有生体適用液を得る。 (もっと読む)


【課題】殺菌水の製造装置および製造方法を提供すること。
【解決手段】有効塩素含有水を、吸水口11からエジェクター14へと供給し、気体と混合する。混合された気体は、スタティックミキサー17内で渦の剪断力によって気泡が破細され、さらに一部の気体は、有効塩素含有水に溶解する。その後、絞り弁18を通過する際に、溶液は大気圧へと解放され、過飽和状態となった気体をマイクロバブルとして再気泡化させ、排水口12から排出し、超音波発生槽10の超音波エネルギーを供給する。 (もっと読む)


【課題】最低限の圧力で送液を行い、液体に気体を溶解させる。
【解決手段】気液混合流体生成装置3は、容器3aと、その容器3a内に連通し、気体が溶存した液体を容器3a内に供給するための液体供給流路3bと、容器3aを密閉状態及び開放状態に切替可能であり、液体供給流路3bから容器3aへ送液を行う間、容器3aを開放状態にして容器3aの内圧を、液体供給流路3b内の液体を容器3aに向かって押す圧力未満にする内圧調整部3dと、容器3a内に連通し、液体が供給された密閉状態の容器3a内の空間に気体を供給するための気体供給流路3eとを備える。 (もっと読む)


【課題】 難溶解性気体の場合であっても、上記気体が溶解された液体を、溶解された気体の放出を最小限に抑制しつつ、次工程に搬送することが可能な気体溶解装置及び気体溶解方法を提供することにある。
【解決手段】 所定圧に加圧された気体を注入する気体注入部と、所定圧に加圧された液体を注入する液体注入部と、上記気体注入部及び上記液体注入部に接続されると共に、注入された上記気体と液体とを混合して溶解させる気液混合溶解器、及び上記気体が溶解した液体を注入時の圧力よりも低い所定圧まで減圧させる背圧バルブとを有する気液混合溶解部と、上記気液混合溶解部に接続されると共に、注入時の圧力よりも低い所定圧に加圧され、上記気体が溶解した液体と、上記気液混合溶解部おいて溶解しなかった気体とを、所定時間貯蔵して分離する気液分離部と、上記気液分離部に接続され、所定長及び所定径寸法を有し、上記気体が溶解された液体を減圧する減圧管路部とを有する構成とする。 (もっと読む)


【課題】汚水が収容される圧力容器にオゾンガスをより効率的に低コストで注入することができる気体注入装置を提供すること。
【解決手段】溶解タンク1内に加圧下で収容される汚水9を溶解タンク1から導出管31を介して導出させ、導出させた汚水9を循環ポンプ46でさらに加圧した後、オゾンガス61が収容されているバッファタンク41aに導入し、その汚水9の圧力によりバッファタンク41a内のオゾンガス61を加圧する。オゾンガス61の圧力が溶解タンク1内の圧力を超えると、バッファタンク41a内のオゾンガス61が気体導出管54aを介して溶解タンク1内に注入される。 (もっと読む)


【課題】副次的なガスの生成がなく、且つ、消費エネルギー量を減少させることができるとともに、配管の内壁表面で菌が繁殖することを確実に抑制することができる活性酸素種生成装置を提供する。
【解決手段】配管1と、配管1の下流側に配置された配管3と、配管1及び配管3間に設けられた溶存酸素向上手段2とを備える。溶存酸素向上手段2は、配管1内の水中溶存酸素濃度よりも配管3内の水中溶存酸素濃度を高くするためのものである。配管3は、その内壁の表面に、活性酸素種生成能を備えた所定の材料を有している。 (もっと読む)


【課題】wetタイプ(溶液使用)の窒素酸化物(NOx)の除去(deNOx)装置において、コンパクトな構成で実現する。
【解決手段】溶液とNOxガスとを剪断方式のマイクロバブル発生器のミキサー54で混合しdeNOx反応を行わせる。ミキサー54は、筒状に形成され、軸方向上流側のガイドベーン室541と、下流側のカッター室542と、カッター室542にNOxガスを注入するエゼクターパイプ543とを備える。前段のポンプから溶液が注入されると、ガイドベーン室541のカッター5411,5412で螺旋回転が与えられ、カッター室542のキノコ状の衝突体5421で注入されたNOxガスとともに超微細に砕かれて、マイクロバブルとなる。これによって、NOxガスの溶液内での滞留時間を長くし、また接触面積を多くすることで反応効率を高め、高いdeNOx機能をコンパクトに実現できる。 (もっと読む)


【課題】従来のマイクロバブル発生装置或いは微小気泡発生装置は、筒の中で水流に回転を起こさせ、そこに吸い込ませた空気を巻き込んで微細気泡として水流中に発生させるものである。この場合、水の回転に余分なエネルギーを消耗したり流れを阻害したりする可能性がある。
【解決手段】本発明は、従来とは逆に、水流は直進させ、これに巻き込む空気の流れを回転させて水流中に微細な気泡を発生させるようにした。これは、水流よりも空気流の方が回転させるエネルギーが少なくて済む利点がある。
即ち、加圧した液体が通過する流入路の途中を摺鉢状に窄め、ここに挿入部材を挿入し、挿入部材のテーパ部外壁と上記摺鉢状部分の内壁との間の間隙を記気体流入路から吸引される気体の流通路とし、気体は該流通路を通過する間に旋回しながら挿入部材の前方で高速液体と混合されて微細気泡となり、吐出路から高速放出するものである。 (もっと読む)


【課題】溶融樹脂とガスを効率良く分散させて、ガスを溶融樹脂中へ急速かつ均一に溶解させるマイクロミキサーを提供する。
【解決手段】溶融樹脂とガスとを混合し、該ガスを前記溶融樹脂中に分散または溶解させるマイクロミキサー20であって、溶融樹脂とガスのうちの一方が通過する微細流路23bと、溶融樹脂とガスのうちの他方が通過する導入路22bと、微細流路23bと導入路22bとが合流する第1合流領域25と、第1合流領域25で合流した溶融樹脂とガスとの混合を促進する混合促進領域24とを有し、混合促進領域24は、合流後の溶融樹脂とガスとの混合物がそれぞれ通過する複数の第1微細孔24aと、複数の第1微細孔を通過した混合物が合流する第2合流領域26と、第2合流領域26で合流した混合物が通過する微細吹出孔21cとを含む。 (もっと読む)


21 - 40 / 625