説明

Fターム[4G146MB02]の内容

炭素・炭素化合物 (72,636) | 炭化物、炭素・硫黄含有化合物−その他 (870) | 形状の特定 (232) | 粒状、粉末状(超微粒子、破砕物を含む) (108)

Fターム[4G146MB02]に分類される特許

61 - 80 / 108


【課題】本発明は、室温・常圧という穏やかな条件下で特別な雰囲気制御を要せず、高純度な中性子捕捉療法用として用いることのできる炭化ホウ素ナノ粒子の製造方法を提供する。
【解決手段】溶媒中に分散させたアモルファスのホウ素粒子に、レーザー光を照射して、平均粒径が1〜500nmで結晶性のホウ素ナノ粒子またはホウ素を10原子%以上含有するホウ素含有ナノ粒子を作製するナノ粒子の製造方法。およびこの製造方法で製造されたナノ粒子の表面を有機分子または高分子により修飾するナノ粒子の表面修飾方法 (もっと読む)


【課題】固相炭化反応の進行に高温が必要であるという欠点と、高価な原料を使用しなければならないという欠点を同時に解決する。
【解決手段】周期率表の第4A族、第5A族または第6A族の遷移金属、鉄および不可避的不純物を含有するフェロアロイと、炭素を主体とする炭素材料とを、真空または不活性ガス雰囲気下で共粉砕により固相反応させる、該遷移金属を含む炭化物または該遷移金属および鉄を含む複合炭化物の製造方法。 (もっと読む)


【課題】この発明は、バインダを用いないでも成形型へ充填されたナノSiCの圧粉状態が維持されて優れた成形性をもち、正常な加圧焼結が出来るような成形性の良好な超微細SiC粒子およびその製造方法を得ようとするものである。
【解決手段】粒径が10〜100nmでC−H結合およびSi−H結合を含む成形性に優れた超微細SiC粒子である。 (もっと読む)


【課題】窒化ホウ素と炭化ケイ素の複合材料であって、より微細な窒化ホウ素が前記複合材料中に均一に分散している複合材料、およびそのような複合材料の原料である窒化ホウ素と炭化ケイ素の複合粉末の提供を目的とする。
【解決手段】炭化ケイ素と窒化ホウ素とが複合化されている複合粉末であって、前記複合粉末が、下記式(I)を満たす複合粉末により解決される。
62.1<X+0.101×Y (I)
前記式中、XおよびYは明細書中で定義のとおりである。
また、炭化ケイ素と窒化ホウ素とが複合化されている複合材料であって、前記複合材料が、本発明の複合粉末を焼結して得られた複合材料であり、前記複合材料が、下記式(II)を満たす複合材料により解決される。
S>5.56Y−670 (II)
前記式中、SおよびYは明細書中で定義のとおりである。 (もっと読む)


本発明は、SiC微粒子の部分から、およびSiCのより大きいサイズの粒子の部分から出発して、熱処理および高温で焼結することによる、SiCでできた多孔質耐熱性セラミック製品の製造方法に関する、該方法は、熱処理および高温での焼結前ステップにおいて、SiCの最も微細な粒子が凝集され、次に、第2のステップにおいて、このように得られた粒体が、より大きいサイズの粒子を有するSiC粉末に加えられることを特徴とする。本発明はまた、本質的にα型の再結晶化されたSiCでできた多孔質体、特にそうした方法によって得られた粒子フィルターに関する。 (もっと読む)


この発明は少なくとも95%の炭化珪素SiCを含む多孔質セラミック物質からなる構造物を得る方法に関し、前記方法は前記構造物が少なくとも
― 中位数径が5ミクロン未満であるα-SiC結晶粒子の第1画分;
― 中位数径がα-SiC結晶粒子の第1画分より少なくとも2倍大きく、しかも中位数径が5ミクロン以上であるα-SiC結晶粒子の第2画分;および
― β-SiC結晶粒子もしくは少なくともβ-SiC結晶粒子の先駆物質の画分
を含むα-SiC結晶粒子の混合物から得られることを特徴とする。
この発明はまた当該方法により得られる多孔構造物に関する。 (もっと読む)


【課題】高密度、高強度の炭化ケイ素焼結体を製造する原料として好適な炭化ケイ素粉末の製造方法を提供すること。
【解決手段】核粒子となるシリカ粒子を含むシリカゾルを生成した後、シリコンアルコキシド、アルコールおよびアンモニア水溶液の量比を変えて混合し、温度およびpHを設定して加水分解する(A)(B)の異なる2段階の条件で加水分解して二峰性のシリカゾルを調製し、その後、フェノール類とホルムアルデヒドおよびアンモニア水溶液を添加して重合し、シリカ粒子を核としてその周囲をフェノール樹脂で被覆したコア・シェル構造のSiC前駆体を作製し、無酸素雰囲気下800〜1000℃で熱処理して焼成し、次いで、不活性雰囲気下1400〜2200℃で熱処理して珪化することを特徴とする炭化ケイ素粉末の製造方法。 (もっと読む)


【課題】分散の良いセラミックス焼結体の材料として、微細な炭化物を酸化物粉末に被覆した粉末の提供。
【解決手段】酸化物表面が、平均粒子径100nm以下のW、Ta、Nb、Cr、Si、Vなどの金属の炭化物によって被覆された粉末は、金属とそれに配位した有機物とからなる組成物と、酸化物粉末を溶媒中で混合後、乾燥し、非酸化物雰囲気中にて800〜1800℃で金属を炭化することにより得られる。この酸化物複合材料は、炭化物による酸化物結晶の粒成長抑制効果により酸化物の結晶粒子が従来に比べ微細化され、炭化物粒子の接触点でも容易に焼結が進行してマイクロポアの発生も抑制される。容易に光学的鏡面でき、研磨速度も大きいため、生産の効率化に寄与する。更に、焼結体はイオン加工においても優れた表面粗さが得られ、強度や破壊靭性(耐クラック発生・伝播性)に優れ、加工時のクラック発生や粒子脱落(プルアウト)が無い。 (もっと読む)


【課題】カーバイド誘導炭素、冷陰極用電子放出源及び電子放出素子を提供する。
【解決手段】カーバイド化合物をハロゲン族元素含有気体と熱化学反応させ、カーバイド化合物内の炭素を除いた残りの元素を抽出することによって製造されたカーバイド誘導炭素であって、ラマンピークによる分析の結果、1350cm−1での無秩序に誘導されたDバンドに対する1590cm−1でのグラファイトGバンドの強度比率が0.3〜5の範囲にあるカーバイド誘導炭素、BETが1000m/g以上であるカーバイド誘導炭素、X線回折の分析結果、2θ=25°でグラファイト(002)面の弱ピークまたは広いシングルピークが表れるカーバイド誘導炭素、または電子顕微鏡の分析結果、電子回折パターンが非晶質炭素のハロ−パターンを表すカーバイド誘導炭素である。これにより、均一性に優れ、長寿命を有する電子放出源を提供でき、低コストで電子放出源を製造できる。 (もっと読む)


【課題】ナノメータ単位の粒子径を有するW、Ta、Nb、Cr、Siの炭化物粉末の合成手段を提供する。
【解決手段】金属アルコキシドと、C、H、N、O以外の元素を実質的に含まない有機物の炭素源とを溶媒に溶解した後に、乾燥し得られた組成物を、非酸化雰囲気中、1000〜1900℃にて炭化処理する。アルコキシドに存在する配位子と、炭素源の官能基を液相中で置換し、安定に存在させることにより、金属の酸化物生成を抑制できる。得られた金属炭化物は最大粒子径が150nm以下で遊離炭素含有量が0.5重量%以下である。この焼結体は強度や破壊靭性(耐クラック発生・伝播性)にも優れており、加工時のクラック発生や粒子脱落(プルアウト)が無い材料である。また、炭化物が微細な為、2〜15重量%の炭化物含有量でも従来のセラミックス複合材料焼結体と同等以上の機械的特性や加工特性が得られる。 (もっと読む)


【課題】煩雑な合成工程を経ることなく簡便に製造でき、焼成することで炭化チタン、又
は、炭化チタンと炭素の混合物に変化する、新規な前駆体を提供すること。
【解決手段】チタンのアルコキシド又は塩化チタン、及び、フェノール又はフェノール化
合物の反応生成物からなることを特徴とする、炭化チタン、又は、炭化チタンと炭素の混
合物の前駆体。チタンのアルコキシド又は塩化チタン、及び、フェノール又はフェノール
化合物を混合して溶液又はスラリーを生じさせるか、チタンのアルコキシド又は塩化チタ
ン、及び、フェノール又はフェノール化合物を有機溶媒中で混合して溶液又はスラリーを
生じさせることで製造できる。溶液又はスラリーを乾燥させて得られる固体前駆体を焼成
して炭化反応を生じさせることにより炭化チタン又は炭化チタンと炭素の混合物を製造で
きる。 (もっと読む)


【課題】平均粒子径が50nm以下でありかつ粒度分布の幅が狭い炭化ケイ素粉末を工業的規模で安価に製造することが可能な炭化ケイ素粉末の製造方法及び炭化ケイ素粉末を提供する。
【解決手段】本発明の炭化ケイ素粉末の製造方法は、炭素源及びケイ素源を混合した混合物からなる炭化ケイ素前駆体を、不活性雰囲気中にて熱処理し、さらに酸化性雰囲気中にて熱処理し、得られた炭化ケイ素含有物をフッ化水素酸または強塩基性溶液を用いて洗浄し、この炭化ケイ素含有物に含まれる不純物を除去し、平均粒子径が50nm以下でありかつ粒度分布の幅が狭い炭化ケイ素粉末を得る。 (もっと読む)


【課題】希望する組成を有し、かつ、使用特性に優れ、材料組成の選択により、各種機能を有する高効率の素子、デバイスを実現するのに好適なナノ球状粒子、粉末、工業的利用性を充分に満たす捕集率を実現しえるナノ球状粒子の製造方法を提供する。
【解決手段】アルゴン不活性ガス雰囲気中で、原料金属の溶融物を高速回転する皿ディスク上に供給し、遠心力を作用させて小滴として飛散させ、ガス雰囲気との接触により急冷して球状粒子とした後、得られた球状粒子に対し、プラズマ旋回流内でアルゴンイオンと衝突反応させて、原料金属の成分をナノサイズに分解すると同時に反応性のあるガス成分又は蒸気成分と接触させるプラズマ反応結晶化処理をする。これにより、1μm未満の粒径を有し、真球度20%以内のナノコンポジット構造を有するナノ球状粒子、粉末が得られる。 (もっと読む)


【課題】 複合材料の原料として均一分散が可能な微粒で均粒、且つ化学量論的に炭素と充分に結合し、且つ酸素含有量の少ない炭化タンタル粉末、および炭化タンタル−ニオブの固溶体とそれらの製造方法とを提供すること。
【解決手段】 炭化タンタル粉末および炭化タンタル−ニオブ複合粉末は、比表面積法(BET法)で測定した1次粒子平均粒径が0.10〜0.40μmで、FSSS法で測定した2次粒子平均径が0.40〜1.0μmであり、且つ(1次粒子平均粒径/2次粒子平均径)が0.21〜0.40の範囲内である。 (もっと読む)


【課題】超臨界二酸化炭素及び/又は液体二酸化炭素による固液混合物質の高効率分離法及びその装置を提供する。
【解決手段】超臨界二酸化炭素及び/又は液体二酸化炭素を比重差分離溶媒として用いて、固液混合物質を比重差を利用して分離することからなる固液混合物質の分離方法、上記比重差分離工程と、超臨界二酸化炭素及び/又は液体二酸化炭素を抽出分離溶媒として用いた抽出分離工程を組み合わせて、固液混合物質を比重差分離及び抽出分離を利用して分離することからなる固液混合物質の分離方法、固液混合物質と超臨界二酸化炭素及び/又は液体二酸化炭素を混合し、固液混合物質と超臨界二酸化炭素及び/又は液体二酸化炭素の混合後の流体の密度及び粘性を制御する上記固液混合物質の分離方法、及びその装置。
【効果】超臨界二酸化炭素を比重差分離溶媒として用いた、新しい固液混合物質の高効率分離方法及び装置を提供することができる。 (もっと読む)


本発明は、反応流(14)とエネルギー流(15)の間の相互作用がある気相において、粒子製造用リアクター(11)中でナノメータ粒子(10)を製造する気相法に関する。この方法は、以下の工程を含む:
−該リアクター(11)と気体の塩化物(12)を製造するための装置を連結する工程
−粉末の形態の塩基前駆物質(20)から気体の塩化物を製造する工程、及び
−前記反応流(14)をリアクター(11)内に注入する工程。
(もっと読む)


本発明は、それぞれの割合がn+1±ε、1±ε及びn±εである少なくとも1つの要素M、少なくとも1つの要素A及び少なくとも1つの要素Xを含む粉末であって、Aは、Cd、Al、Ga、In、Tl、Si、Ge、Sn、Pb、P、As及びSから選択され、Mは、遷移金属であり、Xは、B、C及びNから選択され、nは、1、2または3に等しい整数であり、ε、ε及びεは、独立して0から0.2の範囲の数を表し、500nm未満の平均粒径を有する粉末に関する。
(もっと読む)


【課題】シリコンおよび炭化珪素砥粒を含む使用済スラリから、シリコンと炭化珪素を分離抽出して、双方を回収する方法およびそれに用いる装置を提供することを課題とする。
【解決手段】不活性ガス雰囲気下、容器中で炭化珪素粒とシリコン粒とを含む混合物を第1温度に加熱してシリコン粒を溶融させ、次いで得られた溶融シリコンを含む融液を第2温度に保持し、次いで融液の上層部位に取り出し治具を浸漬して取り出し治具に炭化珪素を析出させ、析出した炭化珪素を回収し、かつ容器から精製された溶融シリコンを回収することにより炭化珪素とシリコンとを分離することを特徴とする炭化珪素とシリコンとの分離方法により、上記の課題を解決する。 (もっと読む)


ケイ素金属間化合物、例えば金属ケイ化物を特徴とするケイ素金属溶浸法によって作製された複合体。これは、複合材料技術者に、得られる複合材料の物理的性質を設計又は調整するより大きな柔軟性を与えるばかりでなく、該溶浸材を、固化の際の膨張の量をはるかに減少して有するように組成的に設計することができ、それによってネットシェイプ作製能力を高めることができる。ケイ素溶浸によってなされる複合体の金属成分を設計することによるこれらの及びその他の結果は、複雑な形状の大きな構造物の製作を可能にする。 (もっと読む)


【課題】高温冶金操作を使用してタングステン酸ナトリウムを形成する方法が提供される。
【解決手段】タングステン含有精鉱(12)はシリカ(14)及び珪酸ナトリウム(16)と共にスラッギング炉(18)に導入される。高密度タングステン含有相(20)は重力により、るつぼ炉の底部に沈殿し、低密度のスラグ相(22)がるつぼ炉の上部に隔離される。高密度タングステン相(20)はスパージング炉(24)に導入される。メタンなどの炭素含有ガス(34)はスパージング炉(24)に導入される。スパージング工程により、粗の炭化タングステン生成物(52)が得られ、それが水浸出工程(54)に供される。液体部分(58)は晶出装置(60)へ送られ、結晶(64)が水(68)中で粉砕されるとともに好適な酸(72)による酸浸出(70)に供される。高純度の炭化タングステン(78)がその後に回収される。 (もっと読む)


61 - 80 / 108