説明

Fターム[4K070AC12]の内容

炭素鋼又は鋳鋼の製造 (7,058) | 原料 (1,319) | 副原料 (650) | 酸化物・水酸化物 (444)

Fターム[4K070AC12]の下位に属するFターム

Fターム[4K070AC12]に分類される特許

1 - 20 / 58


【課題】マンガン源として安価な高炭素FeMnを使用したとしてもなお、CのピックアップやMnのロスを少なくすることで、低C高Mn鋼を確実にかつ安価に溶製することができる低炭素高マンガン鋼の溶製方法を提案する。
【解決手段】転炉の吹錬終了後、底吹きガスによるリンシング処理を行ってから取鍋へ出鋼するに当たり、まず、C≧1.0mass%を含有する高C−FeMnを投入したのちにAlを投入して脱酸処理し、次いで、出鋼溶鋼をAP処理して脱硫し、その後、RHガス脱ガス処理を施すことにより、C:0.030〜0.050mass%、Mn≧1.00mass%の鋼とする。 (もっと読む)


【課題】スピッチングやスロッピングの発生を低減しつつ、製鋼における転炉の脱炭処理を高速化することが可能な、転炉の精錬方法を提供する。
【解決手段】事前の転炉脱炭処理における操業実績から、スラグ1トン当たりの炉内残留酸素濃度を計算する工程S1と、その処理後の実績値と対比して、その差から排ガス流量の補正係数を求める工程S2と、現在の転炉脱炭処理における酸素供給量、並びに、求めた排ガス補正係数を用いて補正した排ガス流量、排ガス組成、溶銑成分及び副原料使用量から炉内残留酸素濃度を逐次算出してスラグ性状の絶対値を把握する工程S3と、炉内残留酸素濃度の値に応じて、酸素供給量、ランス高さ、及び底吹きガス流量のうち少なくとも何れか1つを調整する調整工程S4と、を有する転炉の精錬方法とする。 (もっと読む)


【課題】従来技術よりも低コストかつ効果的に、転炉耐火物の溶損を抑制することができる技術を提供すること。
【解決手段】転炉に内張りされていた使用済み転炉耐火物を粉砕し、粒径10〜40mm未満の粉砕物を、転炉内に投入して使用する耐火物保護用のスラグ成分調整剤とし、粒径10mm未満の粉砕物を、転炉内の耐火物表面補修に吹きつけて使用する不定形耐火物の原料とする。該転炉耐火物は、MgOとCを含有するマグネシア・カーボンれんがであることが好ましい。 (もっと読む)


【課題】できるだけ少ないCaO原単位で、かつカルシウムフェライト原単位をできるだけ低減しながら溶銑脱りんし、処理後溶銑中[P]濃度を0.020質量%以下、処理後スラグ塩基度を1.8以下とする。
【解決手段】上底吹き転炉を用いて、生石灰、酸化鉄、およびカルシウムフェライトを90質量%以上含む精錬剤を炉内に添加して溶銑脱りんする方法である。生石灰の添加は、粒径5〜30mmのものを転炉の上方から炉内に投入する方法、および粒径3mm以下のものを上吹きランスから酸素とともに溶銑へ吹き付ける方法のいずれか一方または両方により、その添加量を、上吹き酸素の全吹付け時間の35%が経過した時点における装入塩基度が0.3以上1.0以下となるように調整して、行う。さらに、カルシウムフェライトを90質量%以上含む精錬剤の添加は、粒径5〜50mmのものを転炉の上方から炉内に投入する方法により、その添加量を、上吹き酸素の全吹付け時間の35%が経過した時点より後であって、その80%が経過するまでの間に、実塩基度が1.5以上1.8以下となるように調整して、行う。 (もっと読む)


【課題】スラグから回収する鉄−マンガン酸化物の回収率を向上することができるようにする。
【解決手段】CaO−SiO2−P25相及び(Fe,Mn)Ox相を含む製鋼スラグに対して地金を除去する地金除去処理を行ってから有価金属を回収する方法であって、処理後に塩基度が1.5未満である製鋼スラグ又は塩基度が2.5を超える製鋼スラグに対し、1250〜1400℃の温度範囲内で塩基度が1.5〜2.5になるように改質処理を行い、地金除去処理及び改質処理を行った製鋼スラグに対して、粉砕後の代表粒径が50μm以下となるように粉砕処理を行い、粉砕処理後のスラグを粗粒と微粒とに分級する分級処理の際に、粗粒の代表粒径と微粒の代表粒径との比が2.5倍以上となるよう処理し、分級処理後に粗粒を回収する点にある。 (もっと読む)


【課題】 転炉内の溶銑を脱炭精錬するにあたり、酸素ガスを過剰に供給することなく、脱炭精錬終了時の溶湯中燐濃度を低位に安定する。
【解決手段】 上吹きランス2から酸素ガスを供給するとともに底吹き羽口3から攪拌用ガスを吹き込んで溶銑16を転炉にて脱炭精錬するにあたり、上吹きランスからの酸素ガス流量、精錬中の排ガスの組成、排ガスの流量、副原料投入量及び溶湯成分から酸素バランスを逐次計算することにより求められる不明酸素量に基づいて炉内のスラグ17のFeO濃度を推定し、推定したFeO濃度の推移に照らし合わせて、上吹きランスからの酸素ガス流量、上吹きランスのランス高さ、底吹き羽口からの攪拌用ガス流量のうちの少なくとも何れか1種を調整し、この調整により精錬開始時から全酸素量の40体積%の酸素量を供給する時点までに、炉内スラグ中のFeO濃度を5〜30質量%の範囲に調製する。 (もっと読む)


【課題】転炉に溶銑を装入した後、その溶銑の吹錬を開始するまでの間に、転炉に溶銑を装入した状態で、炉口堆積地金に上吹酸素ランスから酸素を吹き付けて溶解するに際して、黒煙や赤煙の発生を安全かつ経済的に防止しながら、炉口堆積地金を効率良く溶解することができる転炉炉口堆積地金の溶解方法を提供する。
【解決手段】転炉10に溶銑11を装入した後、その溶銑11の吹錬で用いる副原料(例えば、ドロマイト、石灰 等)12の一部または全部を事前に転炉10に投入してから、炉口堆積地金20に上吹酸素ランス21から酸素22を吹き付けて炉口堆積地金20を溶解する。 (もっと読む)


【課題】 蛍石などのフッ素源を使用しなくともCaO系媒溶剤を迅速に滓化させることができ、溶銑を効率的に且つ安価に脱燐することのできる脱燐処理方法を提供する。
【解決手段】 上吹きランス1の軸心部に配置した中心孔4から不活性ガスを搬送用ガスとして脱燐用媒溶剤を溶銑に向けて噴出すると同時に、前記中心孔の周囲に設けた燃料供給ノズル6及び酸素含有ガス供給ノズル7により、前記中心孔からの噴出流の周囲に酸素含有ガスと燃料との反応による火炎の包囲帯を形成させ、且つ、前記中心孔の周囲に設置された3孔以上の周囲孔5から酸素含有ガスを溶銑の浴面に向けて吹き付ける。 (もっと読む)


【課題】同一の転炉で脱りん精錬と脱炭精錬を行うことによるメリットを享受しつつ、P規格の特に厳しい極低りん鋼についても安定的に溶製することのできる転炉精錬方法を提供する。
【解決手段】上底吹き転炉を用いて鋼を精錬するに際し、第1工程で溶銑を転炉に装入し、第2工程でフラックスを用いた転炉上底吹き精錬により溶銑脱りんを行い、第3工程で転炉を傾動して第2工程で生成したスラグの一部又は全部を排出し、第4工程でフラックスを追加して転炉上底吹き精錬により溶銑脱りんを行い、第5工程で転炉を傾動して第4工程で生成したスラグの一部又は全部を排出し、第6工程で転炉上底吹き精錬により脱炭を行う。最初の脱りん精錬とその後のスラグ除去の後、フラックスを追加して第2の脱りん精錬とスラグ除去を行い、さらにその後に脱炭精錬を行うので、脱炭精錬終了後の溶鋼中P濃度を十分に極低P鋼レベルまで低減できる。 (もっと読む)


【課題】 溶銑または溶鋼を酸化精錬するにあたり、効率的な酸化精錬が可能であると同時に転炉型精錬容器の付着地金を効率的に溶解するための上吹きランスを提供する。
【解決手段】 本発明の精錬用上吹きランス1は、上吹きランスの先端部に、鉛直下向きまたは斜め下向き方向の主孔ノズル11及び副孔ノズル12を有し、前記先端部から上方に隔離した位置の上吹きランスの側面部に、水平または斜め下向き方向の二次燃焼用ノズル13を有し、且つ、上吹きランスの内部には、固体酸素源とは異なる粉体を吹錬用の酸素含有ガスとともに前記主孔ノズルを通じて供給するか、または、吹錬用の酸素含有ガスを、前記主孔ノズルを通じて供給するための第1の供給経路と、二次燃焼用の酸素含有ガスを、前記二次燃焼用ノズルを通じて供給するための第2の供給経路と、粉体状の固体酸素源を、搬送用ガスとともに前記副孔ノズルを通じて供給するための第3の供給経路と、を有する。 (もっと読む)


【課題】 2基の転炉を用い、一方の転炉では、炭材などを熱源として大量の鉄スクラップを溶解して高炭素溶融鉄を溶製し、他方の転炉では、該高炭素溶融鉄を酸素吹錬して所定成分の溶鋼を溶製する製鋼方法において、大量の鉄スクラップを鉄源として利用する。
【解決手段】 2基の転炉を用い、一方の転炉では、炉内に鉄スクラップ及び予備処理の施されていない溶銑を装入し、更に、フェロシリコン、黒鉛、コークス及び4.0kg/(高炭素溶融鉄トン)以下の造滓剤を炉内に添加し、炉底から攪拌用ガスを供給しながら、上吹きランスから、精錬の進行に伴って供給流量が低下するようにして酸素ガスを供給し、フェロシリコン、黒鉛及びコークスの燃焼熱により鉄スクラップを溶解して炭素濃度が3質量%以上の高炭素溶融鉄を溶製し、次いで、他方の転炉で前記高炭素溶融鉄を原料として酸素吹錬し、所定の成分の溶鋼を溶製する。 (もっと読む)


【課題】転炉を用いる製鋼精錬プロセス全体として蛍石等のハロゲン化物やAl源を使用すること無く、低燐鋼を安定的に大量製造すると共に、製鋼精錬プロセスを高能率かつ高効率化する方法を提供する。
【解決手段】溶銑予備脱燐処理された溶銑を上底吹き型転炉で吹錬して低燐溶鋼を製造する際に、前記吹錬後のスラグの質量濃度をAl:3.5%以下、T.Fe:15%以上とし、さらにCaOとSiOとの質量濃度比(CaO%/SiO%)を4.0以上6.0以下とすることによって、該スラグ中のフリーCaO質量濃度を7%以上に調整した転炉スラグを同時に製造し、かつ、溶銑予備脱燐処理をされていない溶銑であってSi質量濃度が0.20%以上のものを上底吹き型転炉で溶銑予備脱燐処理する際に、前記のように製造した転炉スラグを脱燐剤の一部として用いてその脱燐処理を行う。 (もっと読む)


【課題】 転炉において溶銑の脱炭精錬と脱燐精錬とを同時に行って溶鋼を溶製するにあたり、少ない脱燐用精錬剤の使用量で、従来と同等の脱燐効率で脱燐精錬することができる、従来提案されているよりも有利な転炉製鋼方法を提供する。
【解決手段】 本発明に係る転炉製鋼方法は、転炉内に酸素源として気体酸素源及び固体酸素源を供給して溶銑の脱炭精錬を行いつつ、CaOを主体とする脱燐精錬剤を添加し、該脱燐精錬剤を滓化させてスラグとなし、脱炭精錬と同時に溶銑に脱燐精錬を施して、溶銑から溶鋼を溶製する転炉製鋼方法において、1つの供給系統から気体酸素源を溶銑浴面に供給し、他の1つの供給系統から固体酸素源を、気体酸素源が供給されている場所の近傍の溶銑浴面に、搬送用ガスを用いて供給することを特徴とする。 (もっと読む)


【課題】MgO量をコントロールすることによって、非金属介在物中のMgO比率を確実に2.5%以下にする。
【解決手段】高強度鋼線用鋼を製造するに際し、転炉での出鋼時から二次精錬処理までの工程において溶鋼へ添加するMgOの量を、溶鋼1t当たり330g以下とし、転炉の脱炭処理では、転炉へ装入する溶銑の[P]を0.040質量%以下とすると共に、供給するCaO量を原単位で12.0〜21.0kg/tする。供給するMgO量を溶鋼1t当たり100〜1500gとし、上吹きに関し、吹錬開始から60%〜80%の時間の第1上吹き区間と、その後では吹き込む酸素量を変え、底吹きに関し、吹錬開始から吹錬終了まで0.045〜0.075Nm3/分/ton且つ0.040〜0.064Nm3/分/mm2を満たすように底吹きのガスを吹く。これに加え、取鍋精錬時に使用するフラックスを所定の組成にする。 (もっと読む)


【課題】一次精錬から二次精錬にわたる工程においてMgO量をコントロールすることによって、非金属介在物中のMgO比率を確実に3.0%以下にできるようにする。
【解決手段】高強度鋼線用鋼を製造するに際し、転炉での出鋼時から二次精錬処理までの工程において溶鋼へ添加するMgOの量を、溶鋼1t当たり330g以下とし、転炉における脱炭処理を行うに際し、当該転炉へ装入する溶銑の[P]を0.040質量%以下とすると共に、供給するCaO量を原単位で12.0〜21.0kg/tする。供給するMgO量を溶鋼1t当たり100〜1500gとし、上吹きに関し、吹錬開始から60%〜80%の時間の第1上吹き区間と、その後では吹き込む酸素量を変え、底吹きに関し、吹錬開始から吹錬終了まで0.045〜0.075Nm3/分/ton且つ0.040〜0.064Nm3/分/mm2を満たすように底吹きのガスを吹く。 (もっと読む)


【課題】スラグ中での溶解速度が高く、かつハンドリング性の良好なスラグ調整剤を提供すること。
【解決手段】スラグ調整剤は、酸化物換算で20質量%以上、98%質量%以下のMgOを主成分とし、残部がCaO、SiO、カルシウム炭酸化物、及びカルシウム水酸化物の少なくともいずれか1種以上、並びに不可避的不純物からなる原料に、外掛けで0.1質量%以上、2.0質量%以下の発泡剤、及び、外掛けで0.01質量%以上、0.2質量%以下の有機繊維の少なくともいずれか一方を添加し、さらにバインダーを加えて混練、成形、及び乾燥してなる。 (もっと読む)


本発明は、溶銑を利用した非晶質合金の製造方法に関する。本発明は、溶銑を提供する段階、前記溶銑に合金材を投入する段階、及び前記溶銑を凝固させる段階を含む、非晶質合金の製造方法を提供する。

(もっと読む)


【課題】本発明は、冷鉄源比率を従来より高くしても、転炉の内張り耐火物の溶損が少なく、炉体寿命を延長できる転炉スラグのMgO濃度調整材及転炉製鋼法を提供することを目的としている。
【解決手段】MgO−C系耐火物を内張りした転炉で、冷鉄源比率を装入鉄源中の10質量%以上として、酸素吹錬で溶鋼を溶製する技術の改良を行った。それは、粒径3mm以下のMgO含有物質を60質量%以上、バインダーとしてのタール・ピッチを20〜40質量%含有し、かつ形状をブリケット状に成型加工してなる転炉スラグのMgO濃度調整材を使用するものである。この場合、前記MgO含有物質が軽焼マグネシア、軽焼ドロマイト及び炭酸マグネシウムから選ばれた1種又は2種以上であるのが好ましい。 (もっと読む)


【課題】 溶銑に酸素ガスや酸化鉄などの酸素源と、生成する燐酸化物を吸収するためのCaO系脱燐精錬剤とを供給して行う溶銑の脱燐処理において、Al23−SiC−C系耐火物などの使用済み炭素含有耐火物を造滓剤として有効活用し、これにより、溶銑の熱余裕度を従来よりも格段に高めることができると同時に、CaO系脱燐精錬剤の迅速な滓化により効率良く脱燐処理することのできる、溶銑の脱燐処理方法を提供する。
【解決手段】 上記課題を解決するための本発明に係る溶銑の脱燐処理方法は、反応容器4に収容された溶銑2に、酸素源、CaO系脱燐精錬剤、及び、非酸化物系珪素化合物及び/または炭素を含有する物質を添加して溶銑に脱燐処理を施すことを特徴とする。 (もっと読む)


【課題】炉に投入したスラグ成分調整剤を速やかに溶解させ、内張り耐火物の溶損を効果的に抑制することができ、且つ炉口からの急激なガス吹き出しを防止することができる溶融金属の精錬方法を提供する。
【解決手段】Mg含有原料を主材とする粉粒状原料を成形し、固化させた成形体であって、ガス発生温度が400℃以下であるガス発生物質Aとガス発生温度が600℃以上であるガス発生物質Bを含有するスラグ成分調整剤を、精錬容器に投入して溶融金属の精錬を行う。スラグ成分調整剤は、炉内温度でガスを発生させるガス発生物質を含むため溶解性が高く、また、炉に投入した際に、ガス発生物質Aからのガス発生とガス発生物質Bからのガス発生が時間差をもって生じるため、ガスの発生が穏やかになり、炉口からの急激なガス吹き出しを防止することができる。 (もっと読む)


1 - 20 / 58