説明

Fターム[4G146MA14]の内容

炭素・炭素化合物 (72,636) | 炭化物、炭素・硫黄含有化合物−種類 (374) | 炭化珪素(SiC) (194)

Fターム[4G146MA14]の下位に属するFターム

Fターム[4G146MA14]に分類される特許

101 - 120 / 173


【課題】本発明の主題は特に、多孔質アモルファス水素化シリコンカーバイド膜を製造可能にする方法である。
【解決手段】本発明は、
a)基板上に、酸化ケイ素貫通ナノワイヤが分散されたアモルファス水素化シリコンカーバイドマトリックスから成る膜を形成する段階と、
b)ステップa)において形成された膜に存在する酸化ケイ素ナノワイヤを、化学物質によって選択的に分解する段階と、を含む貫通孔を備えたアモルファス水素化シリコンカーバイド膜の製造方法に関する。
応用例:マイクロエレクトロニクスおよびマイクロテクノロジーにおけるエアギャップの形成、特に集積回路のエアギャップ相互接続の製造のための化学物質を透過する膜からの化学物質の拡散による犠牲材料の分解を含む全ての製造方法。 (もっと読む)


【課題】高純度炭化ケイ素を簡便かつ高い生産性で得ることができる製造方法を提供する。また、所要の形状および寸法を有する炭化ケイ素成形品を容易に得ることができる製造方法を提供する。
【解決手段】硬化性シリコーン組成物の硬化物を非酸化性雰囲気下、1500℃を超え2600℃以下の温度において加熱することを含む炭化ケイ素の製造方法。前記の硬化性シリコーン組成物を所要の形状および寸法に成形した後に硬化させて前記の硬化物を得ることにより、所要の形状および寸法を有する炭化ケイ素成形品を容易に得ることができる。前記の硬化性シリコーン組成物は、付加硬化型シリコーン組成物または縮合硬化型シリコーン組成物であることが好ましく、また、炭化ケイ素粉体を含有することが好ましい。 (もっと読む)


本発明は、炭化ケイ素のモノリシックなインゴットの製造方法であって、i)ポリシリコン金属チップおよび炭素粉末を含む混合物を、蓋を有する円筒状反応セルの中へと導入する工程と、ii)i)の円筒状反応セルを密封する工程と、iii)ii)の円筒状反応セルを真空加熱炉の中へと導入する工程と、iv)iii)の加熱炉を排気する工程と、v)iv)の加熱炉に、大気圧近くまで実質的に不活性ガスであるガス混合物を充填する工程と、vi)v)の加熱炉の中の円筒状反応セルを1600〜2500℃の温度に加熱する工程と、vii)vi)の円筒状反応セルの中の圧力を0.05torr(約6.7Pa)以上50torr(約6.7kPa)未満まで低下させる工程と、viii)vii)の円筒状反応セルの蓋の内側でのこの蒸気の実質的な昇華および凝縮を許容する工程と、を含む方法に関する。 (もっと読む)


【課題】大きな変形を伴う基材の表面に形成した場合においても、剥離及びクラックが発生しにくく且つ耐蝕性が高い炭素質薄膜を実現できるようにする。
【解決手段】炭素質薄膜は、基材の表面に形成され、炭素同士が結合したC−C成分及び炭素とシリコンとが結合したSiC成分を含む膜本体を備えている。膜本体の表面における酸化シリコン成分の比率は、0.05以下である。 (もっと読む)


改善された炭化ケイ素粒子、改善された炭化ケイ素研磨粒子および化学的機械的平面化(CMP)法において用いるための研磨スラリー組成物において、粒子は、ナノサイズ炭化粒子、詳しくはシリカに似た化学的表面特性を有する炭化ケイ素粒子を含むことが可能である。
(もっと読む)


任意にpまたはn型ドープした連続セラミック(例えば炭化ケイ素)ナノファイバ(502,602,604,606,608,702,704,1102,1104)は、ポリマセラミック前駆体をエレクトロスピニングすることによって製造され、ポリマセラミック前駆体の細い繊維を生成し、これは次いで熱分解される。セラミックナノファイバは、強化された複合材料(400)、熱電発電機(600,700)、および高温粒子フィルタ(1200)に限定されない様々なアプリケーションに用いられる。 (もっと読む)


【課題】炭化ケイ素ナノ粒子同士の凝集を抑制することにより分散性及び分散安定性を向上させることが可能な炭化ケイ素ナノ粒子分散液の製造方法及び炭化ケイ素ナノ粒子分散液、この炭化ケイ素ナノ粒子分散液を用いて得られる耐摩耗性、耐擦傷性、耐熱性、硬質性に優れた炭化ケイ素ナノ粒子膜を提供する。
【解決手段】本発明の炭化ケイ素ナノ粒子分散液の製造方法は、凝集性を有する炭化ケイ素ナノ粒子1の表面に酸化処理を施して表面酸化層3を形成し、次いで、この炭化ケイ素ナノ粒子1の表面酸化層3を除去し、次いで、この表面酸化層3が除去された易分散性の炭化ケイ素ナノ粒子11を分散媒4中に分散させる。 (もっと読む)


【課題】二次加工することなく、低温でカーボンナノチューブ集合体を製造するためのカーボンナノチューブ集合体の製造方法を提供することを目的とする。
【解決手段】有機ケイ素ポリマーを、空気、オゾン、酸素、塩素ガス、臭素ガス、及びアンモニアガスのうちいずれか1以上の酸化性ガス雰囲気中、50〜400℃の温度で焼成し有機ケイ素ポリマーの不融化物を得る第1工程と、前記有機ケイ素ポリマーの不融化物を焼成し炭化ケイ素を得る第2工程と、前記炭化ケイ素に、1100nm以下の波長のレーザー光を照射しながら、真空度1.01×10〜1.33×10−8Pa中、500〜1700℃の温度で焼成しカーボンナノチューブの集合体を得る第3工程とを備えたことを特徴とするカーボンナノチューブ集合体の製造方法である。 (もっと読む)


【課題】気相中で合成したナノ粒子の表面を改質して凝集を防止することができ、或いは、粒子表面に電荷を付加することなく他物質を被覆することができるナノ粒子の表面処理装置および方法を提供する。
【解決手段】内部にマイクロ波2が共鳴可能な共鳴空間9を有し、マイクロ波の吸収が少ない材料からなる中空共鳴容器10と、中空共鳴容器内に所定の周波数のマイクロ波を供給して共鳴空間にマイクロ波の共鳴状態を形成するマイクロ波供給装置12と、中空共鳴容器の外部から、共鳴空間を通って、その外部まで連続して延びる連続中空管20と、連続中空管の内側を通してその一端から他端に向けて、ナノ粒子を含む混合ガスを連続的に供給するナノ粒子供給装置22と、連続中空管の他端から排出された混合ガスからナノ粒子1を分離するナノ粒子分離装置26とを備える。 (もっと読む)


本発明は、β−SiC多孔質基板上に、ナノファイバまたはナノチューブを含む複合材の製造方法において、(a)前記β−SiC多孔質基板の中またはSiC前駆体の中に、ナノチューブまたはナノファイバの成長触媒を取込む過程と、(b)少なくとも一つの炭化水素および水素を含む混合物からカーボンナノチューブまたはカーボンナノファイバを成長させる過程と、(c)任意には、前記カーボン製ナノチューブまたはカーボン製ナノファイバをSiCナノファイバへと変換する過程とを含む方法に関する。この複合製品は、触媒または触媒担体として利用可能である。 (もっと読む)


【課題】炭化ケイ素の表面に反応性イオンエッチングにより微細加工を施す際に、炭化ケイ素の表面を任意形状かつ高精細に微細加工することができ、特に、ナノメートル級の寸法公差による微細加工を行うことができる炭化ケイ素の表面処理方法を提供する。
【解決手段】単結晶炭化ケイ素基板の表面に反応性イオンエッチング(RIE)により微細加工を施す前に行う表面処理方法であって、単結晶炭化ケイ素基板の表面に、アンモニア及び過酸化水素を含む水溶液、塩酸及び過酸化水素を含む水溶液、硫酸及び過酸化水素を含む水溶液、フッ酸及び過酸化水素を含む水溶液の群から選択される1種または2種以上を順次用いてケミカル洗浄を施し、次いで、この表面に酸素プラズマ処理を施す。 (もっと読む)


【課題】高強度SiCマイクロチューブを提供する。
【解決手段】ケイ素系高分子繊維を電離放射線の照射により表面部のみ酸化し、酸化部分を熱処理により架橋した後、ケイ素系高分子材料が可溶な溶媒とケイ素高分子と反応してアルコキシドを生成する溶媒とを混合した混合溶媒により、繊維中心部の未架橋部分を抽出して中空繊維とし、更に、中空繊維を不活性ガス中で焼成して直径20〜100μmの高強度炭化ケイ素(SiC)マイクロチューブとする。 (もっと読む)


【課題】この発明は、バインダを用いないでも成形型へ充填されたナノSiCの圧粉状態が維持されて優れた成形性をもち、正常な加圧焼結が出来るような成形性の良好な超微細SiC粒子およびその製造方法を得ようとするものである。
【解決手段】粒径が10〜100nmでC−H結合およびSi−H結合を含む成形性に優れた超微細SiC粒子である。 (もっと読む)


【課題】大きな比表面積を有するばかりでなく、前駆体ポリマーの熱分解中に起こるガス発生と体積収縮に起因して形成される欠陥を大幅に低減して、構造材としても利用することのできる多孔質体を提供する。
【解決手段】流動性のある前駆体ポリマーから得られる多孔質成形体であって、前駆体ポリマー成形体から互いに連通する気孔を有する前駆体硬化成形体を形成し、この前駆体硬化成形体を焼成して多孔質成形体を得る。 (もっと読む)


【課題】 実用的な条件によって加工変質層を除去するSiC基板の製造方法を提供する。
【解決手段】 本発明のSiC基板11は、実質的に平行な第1および第2の主面11a、11bを有し、第2の主面11bのみが鏡面仕上げされており、反りが±50μm以下であるSiC基板であって、第2の主面11bの表面粗度Raは1nm以下であり、第1の主面11aの加工変質層が除去されている。 (もっと読む)


本発明は、SiC微粒子の部分から、およびSiCのより大きいサイズの粒子の部分から出発して、熱処理および高温で焼結することによる、SiCでできた多孔質耐熱性セラミック製品の製造方法に関する、該方法は、熱処理および高温での焼結前ステップにおいて、SiCの最も微細な粒子が凝集され、次に、第2のステップにおいて、このように得られた粒体が、より大きいサイズの粒子を有するSiC粉末に加えられることを特徴とする。本発明はまた、本質的にα型の再結晶化されたSiCでできた多孔質体、特にそうした方法によって得られた粒子フィルターに関する。 (もっと読む)


本発明は、ナノ粒子基質を使用した、酸化ホウ素又は酸化ケイ素の炭化物化又は窒化ステップを含む、炭化ホウ素、窒化ホウ素、及び炭化ケイ素を調製するための、新規で有用な方法を対象とする。
(もっと読む)


【課題】高密度、高強度の炭化ケイ素焼結体を製造する原料として好適な炭化ケイ素粉末の製造方法を提供すること。
【解決手段】核粒子となるシリカ粒子を含むシリカゾルを生成した後、シリコンアルコキシド、アルコールおよびアンモニア水溶液の量比を変えて混合し、温度およびpHを設定して加水分解する(A)(B)の異なる2段階の条件で加水分解して二峰性のシリカゾルを調製し、その後、フェノール類とホルムアルデヒドおよびアンモニア水溶液を添加して重合し、シリカ粒子を核としてその周囲をフェノール樹脂で被覆したコア・シェル構造のSiC前駆体を作製し、無酸素雰囲気下800〜1000℃で熱処理して焼成し、次いで、不活性雰囲気下1400〜2200℃で熱処理して珪化することを特徴とする炭化ケイ素粉末の製造方法。 (もっと読む)


この発明は少なくとも95%の炭化珪素SiCを含む多孔質セラミック物質からなる構造物を得る方法に関し、前記方法は前記構造物が少なくとも
― 中位数径が5ミクロン未満であるα-SiC結晶粒子の第1画分;
― 中位数径がα-SiC結晶粒子の第1画分より少なくとも2倍大きく、しかも中位数径が5ミクロン以上であるα-SiC結晶粒子の第2画分;および
― β-SiC結晶粒子もしくは少なくともβ-SiC結晶粒子の先駆物質の画分
を含むα-SiC結晶粒子の混合物から得られることを特徴とする。
この発明はまた当該方法により得られる多孔構造物に関する。 (もっと読む)


【課題】電子放出特性の向上や摩擦特性の向上に有効な尖頭状の形態を有する炭化ケイ素ナノ構造体、およびその炭化ケイ素ナノ構造体を低温で簡素なプロセスで製造できる方法の提供。
【解決手段】Si基板の表面に尖頭状の炭化ケイ素集合体が突出して点在している炭化ケイ素ナノ構造体、および圧力1〜70Pa、0.5〜3kWのマイクロ波出力、基板温度350〜600℃のSi基板を用いるマイクロ波プラズマCVD法による炭化ケイ素ナノ構造体の製造方法。 (もっと読む)


101 - 120 / 173