説明

Fターム[4K013FA02]の内容

溶融状態での鋼の処理 (7,585) | 制御、測定又は数値限定 (648) | 成分組成 (211)

Fターム[4K013FA02]に分類される特許

1 - 20 / 211



【課題】マンガン源として安価な高炭素FeMnを使用したとしてもなお、CのピックアップやMnのロスを少なくすることで、低C高Mn鋼を確実にかつ安価に溶製することができる低炭素高マンガン鋼の溶製方法を提案する。
【解決手段】転炉の吹錬終了後、底吹きガスによるリンシング処理を行ってから取鍋へ出鋼するに当たり、まず、C≧1.0mass%を含有する高C−FeMnを投入したのちにAlを投入して脱酸処理し、次いで、出鋼溶鋼をAP処理して脱硫し、その後、RHガス脱ガス処理を施すことにより、C:0.030〜0.050mass%、Mn≧1.00mass%の鋼とする。 (もっと読む)


【課題】ボロン含有ステンレス鋼の製造に当たり、ボロンを鋼中に効率よく歩留らせることのできるボロン含有ステンレス鋼の製造方法を提案する。
【解決手段】鉄、クロムおよびニッケル含有原料を電気炉で溶解し、得られた溶鋼をAODおよび/またはVODにて脱炭精錬し、次いで、Al、またはAlとフェロシリコン合金を用いて脱酸することでCrの還元を行ない、その後、生石灰や蛍石を添加すると共にAlを添加してAlの含有量が0.005〜0.2mass%となるようにし、その後、0.05〜2.50mass%のボロン源を添加して、ボロン含有ステンレス鋼を製造する。 (もっと読む)


【課題】転炉出鋼後に採取した溶鋼あるいは二次精錬中の溶鋼のS濃度を迅速かつ精度よく分析することによって、高い精度で鋼のS濃度を制御することを可能とする溶鋼の脱硫方法、およびその脱硫方法を用いた溶鋼の製造方法を提案する。
【解決手段】転炉出鋼後の溶鋼あるいは二次精錬中の溶鋼から試料を採取してS濃度を分析し、その分析値に基づいて、Sの合否判定および/またはその後の脱硫処理条件を決定する溶鋼の脱硫方法において、上記S濃度を、試料を純酸素雰囲気下で高周波誘導加熱により酸化させて、溶鋼中のSをSOとする高周波誘導加熱工程と、上記高周波誘導加熱工程で生成したSO含有ガスを、紫外蛍光法で分析して試料中のS濃度を定量する分析工程を含む方法で分析することとを特徴とする溶鋼の脱硫方法および製造方法。 (もっと読む)


【課題】極低硫化、極低燐化を同時になし得る高純度鋼の溶製方法を提案する。
【解決手段】連続鋳造法または造塊法により製造した鋼を、エレクトロスラグ再溶解法による再溶解によって高純度鋼に溶製する方法において、前記エレクトロスラグ再溶解時に添加するフラックスおよび溶融時スラグの組成を、
CaO :20〜60mass%、 Al:10〜40mass%、
CaF:20〜60mass%、 T.Fe(酸化鉄):1〜10mass%、
CaO/Al:1.0〜6.0、
に調整する。 (もっと読む)


【課題】非金属介在物を低減させた高清浄鋼の製造方法であるESR法により、比較的Si濃度の高い高清浄鋼を安定して製造する製造方法を提供する。
【解決手段】添加元素若しくは不純物元素としてs−Alを含み、少なくとも質量%で1.0〜2.0%のSiを含有する鋼種の製造方法であって、懸下した消耗電極5を金属鋳型2中の溶融スラグ6に上部から降下させていくとともに前記消耗電極5と前記金属鋳型2との間に通電し前記溶融スラグ6上面近傍で前記消耗電極5を溶解させこの溶滴を前記溶融スラグ6中を通過させてから前記金属鋳型2の底部近傍で捕捉して前記鋼種の鋼塊9を得るESR法において、前記溶融スラグ6上面近傍を少なくとも酸素を含む不活性ガスからなる混合ガスで置換する。 (もっと読む)


【課題】転炉出鋼後から二次精錬終了前において採取した溶鋼試料のS濃度を迅速かつ精度よく分析することによって、高い精度で鋼のS濃度を制御することを可能とする溶鋼の脱硫方法、およびその脱硫方法を用いた溶鋼の製造方法を提案する。
【解決手段】転炉から出鋼した溶鋼を二次精錬する方法において、精錬中の溶鋼から採取した試料のS濃度を分析し、その分析値に基づいて、その後の脱硫処理条件を決定するに当たり、上記S濃度の分析を、試料を純酸素雰囲気下で高周波誘導加熱により酸化させて、溶鋼中のSをSOとする高周波誘導加熱工程と、上記高周波誘導加熱工程で生成したSO含有ガスを、紫外蛍光法で分析して試料中のS濃度を定量する分析工程を含む分析方法で行う溶鋼の脱硫方法および製造方法。 (もっと読む)


【課題】RH式真空脱ガス処理中に、その処理後の溶鋼中C濃度を0.010〜0.050%の範囲とする溶鋼のC濃度調整方法であって、そのRH処理後のC濃度を目標値±0.001%以内に制御する方法を提供することである。
【解決手段】RH式真空脱ガス処理中に、その処理中溶鋼のC濃度を0.005〜0.010%高める加炭処理を行うことによって、その加炭処理後の溶鋼中C濃度を0.010〜0.050%の範囲とする。その加炭処理開始前にその溶鋼中のAl濃度を0.01%〜0.10%とし、かつ、そのRH真空槽内雰囲気圧力を67〜1330Paとしてから、炭剤粉末とCaO粉末とを混合した加炭剤粉末を、そのRH真空槽内に設置した上吹きランスを通じて、C質量換算速度を加炭対象溶鋼のトン当たり0.024〜0.058kg/minとして、その溶鋼へ上吹き添加する。 (もっと読む)


【課題】難脱硫鋼の脱硫技術に関し、溶鋼やステンレス鋼などの溶融鉄合金をCaO−SiO系スラグを用いてスラグ−メタル間反応により溶融金属中の硫黄濃度を低減する脱硫処理において脱硫率を向上させる脱硫方法を提供する。
【解決手段】溶融金属表面に、CaO、SiO、Alを合計で80%以上含有し、それら以外の成分としてMgO、Cr、MnO、鉄酸化物の一種または二種以上を合計で20質量%以下含有するスラグを形成させ、溶鋼とスラグとを攪拌し脱硫処理を行う。この際に、スラグ中のCaO,SiO、Alの各濃度が(1)式:(%CaO)/(%Al)≧2.3と,(2)式:0.4≦(%CaO)/(%SiO)≦3.5とを同時に満足するように調整し、かつ溶鋼中のSi濃度[Si]≧0.1質量%、もしくはAl濃度[sol.Al]≧0.005質量%に調整した後、スラグ中BaO濃度が(3)式:4≦(%BaO)≦20を満足するようにスラグにBaOを添加する。 (もっと読む)


【課題】鋼中の酸化物組成をCaO−Al−MgO系に制御することで転動疲労寿命の長い高清浄度鋼を提供することに加え、その溶製方法を提供する。
【解決手段】mass%で、C濃度:0.85〜1.2%、Sol.Al濃度:0.020〜0.035%、Cr濃度:0.50〜2.0%、S濃度:0.0020%以下、Total O濃度:0.0020%以下を有するとともに、連続鋳造後の鋳片から切り出したサンプルを鏡面研磨して顕微鏡観察した際に該鏡面研磨面上に存在する円相当径で1.0μm以上10μm以下の非金属介在物を有し、該非金属介在物を構成する全元素の中でのCa、Al、MgおよびOの占める割合が90atom%以上であるとともに、そのCa濃度が5atom%以上である非金属介在物の全個数のうち、その非金属介在物のCaO濃度が20〜50mass%であるものの個数比率が50%以上であることを特徴とする高清浄度軸受鋼である。 (もっと読む)


【課題】 ストラス寿命試験の10%破断寿命(B10寿命)が5×107回以上となる高疲労寿命の高疲労強度鋼鋳片の製造方法を提供する。
【解決手段】 高炉で溶製された溶銑を転炉で脱炭精錬して溶鋼を溶製し、該溶鋼を転炉から取鍋に出鋼し、その後、取鍋内の溶鋼に加熱攪拌処理を施した後に真空脱ガス処理を施し、次いで、得られた溶鋼を連続鋳造機で連続鋳造して高疲労強度鋼の鋳片を製造するにあたり、前記出鋼後に取鍋内の転炉スラグを取鍋から除滓し、該転炉スラグの除滓後、取鍋内に媒溶剤を添加して、該媒溶剤の添加によって生成される取鍋内スラグの組成を、比[質量%CaO/質量%SiO2]が6.0〜12.0、比[質量%CaO/質量%Al23]が1.5〜3.0、MgO含有量が4.0質量%以下、TiO2含有量が1質量%以下で、且つ、取鍋内スラグの1600℃での粘度を1.3〜2.0poiseに調整し、前記加熱攪拌処理を実施する。 (もっと読む)


【課題】REMの歩留を確保しつつ、ノズル閉塞性の向上やノズル溶損性の向上を図ることによって安定的に操業することができるようにする。
【解決手段】REM添加鋼の製造方法は、まず、REM=20〜40質量%、Ca=1〜5質量%、残部にSiを含み且つ5×Ca濃度(質量%)+5≦REM濃度(質量%)≦5×Ca濃度(質量%)+25を満たす組成で、さらに、1mm以下の粒度のものが25%未満、100μm以下の粒度のものが15%未満、平均粒度が500μm〜700μm、最大粒度が5mmとなるREM添加用ワイヤーを用意する。二次精錬処理にて、S≦0.0020質量%、O≦0.0030質量%、0.01≦Al≦0.07質量%になるよう溶鋼の成分調整を行った後、前記REM添加用ワイヤーを、0.05〜1kg/min/tonの添加速度で溶鋼に添加すると共に、REM添加時の攪拌動力密度を1〜20W/tonとして精錬を行う。 (もっと読む)


【課題】耐衝撃性及び表面性状に優れ、かつニッケル製錬プラント及び海洋構造物等への使用に耐えるFe−Ni−Cr−Mo合金を提供する。
【解決手段】質量%で、C:0.001〜0.015%、Si:0.01〜0.30%、Mn:0.01〜0.50%、P:0.020%以下、S:0.0015%以下、Ni:30.00〜32.00%、Cr:26.00%を超え28.00%以下、Mo:6.00〜7.00%、Cu:1.00%を超え1.40%以下、Al:0.001〜0.10%、N:0.15〜0.25%、B:0.0005〜0.0030%、Ca:0.0001〜0.0020%、Mg:0.0001〜0.0050%、O:0.0001〜0.0050%、残部:Feおよび不可避不純物からなる。 (もっと読む)


【課題】伸びフランジ性と曲げ加工性に優れた高強度鋼板を提供する。
【解決手段】鋼板中に、Ce、La、Nd、Prの1種または2種以上を含有し、かつ、Caを含有し、かつ、O、Sから1種または2種を含有する第1の介在物相と、さらに、Mn、Si、Ti、Alの1種または2種以上を含有する第2の介在物相との、異なる第1と第2の介在物相を含む複合介在物から成る球状介在物を含有し、該球状介在物は円相当径0.5〜5μmの大きさの複合した1つの球状介在物を形成して、該球状介在物の個数割合が50%以上であり、加えて、5μm超の介在物の個数密度が10個/mm未満であることを特徴とする伸びフランジ性と曲げ加工性に優れた高強度鋼板。 (もっと読む)


【課題】 比較的簡便に製造可能で、特にフッ素を含有しなくても高効率で溶融鉄の脱硫処理を可能にする脱硫剤を提供する。
【解決手段】 上記課題を解決するための脱硫剤は、CaOを主成分とする粉状の石灰と、溶鉱炉で溶銑を製造する際に副産物として生成されるスラグを固化させた後に粉砕処理することにより得られた固体粉状物質と、を混合することにより製造されたことを特徴とする。この場合に、前記固体粉状物質と前記石灰との配合質量比(固体粉体物質の配合量(質量%)/石灰の配合量(質量%))を0.05以上1.0以下とする、前記固体粉状物質の平均粒子径を15μm以下とする、前記脱硫剤の塩基度((質量%CaO)/(質量%SiO2))を3.5以上とすることで、より一層脱硫効率が向上する。 (もっと読む)


【課題】伸びフランジ性に優れた高曲げ加工性・低降伏比高強度鋼板を提供する。
【解決手段】質量%で、C:0.03〜0.25%、Si:0.1〜2.0%、Mn:0.5〜3.0%、P:0.05%以下、T.O:0.0050%以下、S:0.0001〜0.01%、N:0.0005〜0.01%、酸可溶Al:0.01%超、Ca:0.0005〜0.0050%、Ce、La、NdもしくはPrの1種または2種以上:0.001〜0.01%、残部が鉄からなる鋼板であって、鋼板中にはCe、La、Nd、Prから1種、2種、3種、または4種を含有し、かつ、Caを含有し、かつ、O、Sから1種または2種含有する介在物相と、さらにMn、Si、Alから1種、2種、または3種を含有する介在物相との異なる成分を含む複合介在物を含み、円相当径0.5〜5μmの複合介在物の個数割合が30%以上であることを特徴とする。 (もっと読む)


【課題】Alキルド鋼溶製用の高Al2O3含有耐火物からなる取鍋を用いても、高い生産性で低Al鋼を溶製可能な方法を提供する。
【解決手段】質量%で、C:0.03-1.2%、Si:0.03-0.8%、Mn:0.1-2.5%、P:0.01%以下、S:0.150%以下、sol.Al:0.005%以下、Ti:0.1%以下、Ca:0.0020%以下、O:0.0050%以下およびN:0.001-0.03%を含有し、残部がFeおよび不純物からなる低Al鋼の溶製方法であって、取鍋がAl2O3を55質量%以上含有する耐火物からなり、前記取鍋の鋼浴部の面積A[m2]と前記取鍋に収容される溶鋼の体積V[m3]の比A/Vが2.5[m2/m3]以下を満足し、溶鋼の攪拌時の攪拌エネルギーKが0.3[MJ/t]以下を満足、または、溶鋼のガス攪拌および溶鋼の環流操作に伴う攪拌動力密度εLが130[W/t]以下を満足する。 (もっと読む)


【課題】脱硫処理の開始から終了まで溶鋼中のAl含有量を高く保持して、溶鋼中のO活量の上昇を抑制することによって、脱硫反応の進行を促進し、低硫鋼を安定して得られる精錬方法を提供する。
【解決手段】真空脱ガス槽2の頂部に設けたランス7から酸化カルシウムおよび酸化アルミニウムを主成分とする脱硫用フラックス8を、キャリアガス,燃料ガス9および酸化性ガス10とともに噴射して真空脱ガス槽内の溶鋼3に吹き付ける精錬方法において、脱硫用フラックス8の供給速度を溶鋼トンあたり0.5〜0.8kg/分とし、かつ脱硫用フラックス8を吹き付ける前の溶鋼のAl含有量[%Al]MEを([%Al]SP+0.025M)以上とする。 (もっと読む)


【課題】入熱量が50kJ/mm以上の大入熱溶接を行なった場合であってもHAZ靱性に優れた鋼材およびその製造方法を提供する。
【解決手段】(a)全酸化物系介在物の組成を測定して単独酸化物に質量換算したとき、ZrO2:5〜50%、REMの酸化物:5〜50%、CaO:50%以下(0%を含まない)を満足し、且つ、(b)全介在物のうち、円相当直径が0.1〜2μmの介在物が120個/mm2以上、3μm超の酸化物が5.0個/mm2以下、5μm超の酸化物が5.0個/mm2以下であり、全介在物の組成を測定したとき、全介在物の個数に対して、(c−1)REMとZrのモル比が0.6〜1.4を満足するREMおよびZr含有介在物Iの個数割合が30%以上であるか、および/または(c−2)REMとZrの合計モル数と、AlとCaとTiの合計モル数との比が0.5〜1.2を満足するREM、Zr、Al、Ca、およびTi含有介在物IIの個数割合が40%以上を満足する鋼材。 (もっと読む)


【課題】連続鋳造時に発生する鋳片表面欠陥を抑制しながら高マンガン系非磁性鋼を生産性高く製造する方法を提供する。
【解決手段】質量%で,C:0.45〜1.3%,Si:0.05〜0.5%,Mn:10〜19%,P:0.10%以下,S:0.02%以下,Al:0.003〜0.1%,N:0.005〜0.30%を含有する化学組成を有し,透磁率が1.1以下である高マンガン系非磁性鋼を連続鋳造法により製造する方法であって,鋳造温度Tが式(1)を満たすよう制御するとともに,鋳造速度Vc(m/min)を下記式(2)の範囲に選定することを特徴とする非磁性鋼の製造方法:
a≦T≦a+50 ・・・(1)
Vc≧0.02×(T−a) ・・・(2)
ここで,aは鋼の組成から下記式(3)により決定される値である。
a=1557-{53×(%C)+4.5×(%Mn)+45×(%P)} ・・・(3) (もっと読む)


1 - 20 / 211