説明

テンプレートの製造装置及びテンプレートの製造方法

【課題】基板の裏面に凹部を有する場合においても、ドライエッチング加工における面内のエッチングレートを制御し、パターン精度に優れたテンプレートの製造装置及びテンプレートの製造方法を提供する。
【解決手段】実施形態によれば、真空容器と、電極と、調整体と、を含むテンプレートの製造装置が提供される。前記真空容器は、大気圧よりも減圧された雰囲気を維持可能とされている。前記真空容器は、反応性ガスの導入口と排気口とを有する。前記電極は、前記真空容器の内部に設けられ、高周波電圧が印加される。前記調整体は、絶縁体を主成分とする。前記調整体は、前記電極の上に載置される基板の前記電極の側の面に設けられた凹部に挿入される。

【発明の詳細な説明】
【技術分野】
【0001】
本発明の実施形態は、テンプレートの製造装置及びテンプレートの製造方法に関する。
【背景技術】
【0002】
微細パターンの形成技術は、半導体等の電子デバイス、光デバイス、記録メディア、化学・バイオデバイス、MEMS(Mechanical Electrical Micro System)などの各種のデバイスに応用され、その進展はめざましい。例えば、現在、光を用いて数10nm以下、また、電子線を用いて10nm以下のレジストパターン形成が達成されている。しかし、これらの微細パターン形成のための装置は高価であり、より安価な微細パターン形成技術が求められている。これを実現するために、ナノインプリント技術が開発されつつある。
【0003】
ナノインプリント技術は、従来のプレス技術と比較して、より微小な構造を実現できる。ナノインプリント技術自体には解像度の限界がなく、解像度はナノインプリントに用いられるモールド(テンプレート)の精度によって決まる。すなわち、高精度のモールドを実現することによって、従来のフォトリソグラフィよりも容易に、はるかに安価な装置により、極微細パターンが形成できる。
【0004】
ナノインプリント技術の1つである光硬化ナノインプリントにおいては、例えば、表面に微細な三次元形状の凹凸パターンが形成された透明な基板からなるテンプレートを使用する。この方法では、例えばシリコン基板に光硬化樹脂を塗布し、その光硬化樹脂にナノインプリントテンプレートの表面を押し付けた状態で紫外光を照射して光硬化樹脂を硬化させ、その後、ナノインプリントテンプレートを剥離することによって光硬化樹脂に所望のパターンを形成する。
【0005】
また、ナノインプリント技術の他の方法である、熱ナノインプリントやソフトリソグラフィなどにおいても、上記のようにナノインプリントテンプレートを樹脂に押し付けてパターンを転写する。
【0006】
ナノインプリント技術を量産に適用する際には、ナノインプリントテンプレートとしては、原盤から作製されたレプリカテンプレート(以下では単に「テンプレート」と言う)が用いられる。テンプレートにおいて、微細な三次元形状の凹凸パターンが形成された表側の面とは反対側の裏面には、部分的に凹部が設けられることがある。すなわち、テンプレート基板の裏面の例えば中央部に凹部を設け、その凹部の厚さを周辺部よりも薄くすることによって、テンプレート基板を変形し易くし、上記のテンプレートの光硬化樹脂への押し付け工程(パターン転写工程)やテンプレートの剥離工程を容易化でき、結果としてスループットが向上できる。
【0007】
テンプレートの表側の面への微細な三次元形状の凹凸パターンの形成にはドライエッチング加工が用いられるが、テンプレートの裏面に部分的に凹部が設けられていると、凹部の有無によってドライエッチングの際のプラズマ電位に差異が生じ、これにより、エッチングレートが変動する。このため、テンプレートの表側の面におけるエッチング加工の面内精度が劣化する。
【0008】
また、例えば、テンプレートの面内でエッチングレートを変化させ、面内の所望の部分においてより高精度のパターンを実現する技術も望まれている。
【先行技術文献】
【特許文献】
【0009】
【特許文献1】特開2008−270686号公報
【発明の概要】
【発明が解決しようとする課題】
【0010】
本発明の実施形態は、基板の裏面に凹部を有する場合においても、ドライエッチング加工における面内のエッチングレートを制御し、パターン精度に優れたテンプレートの製造装置及びテンプレートの製造方法を提供する。
【課題を解決するための手段】
【0011】
本発明の実施形態によれば、真空容器と、電極と、調整体と、を含むテンプレートの製造装置が提供される。前記真空容器は、大気圧よりも減圧された雰囲気を維持可能とされている。前記真空容器は、反応性ガスの導入口と排気口とを有する。前記電極は、前記真空容器の内部に設けられ、高周波電圧が印加される。前記調整体は、絶縁体を主成分とする。前記調整体は、前記電極の上に載置される基板の前記電極の側の面に設けられた凹部に挿入される。
【図面の簡単な説明】
【0012】
【図1】第1の実施形態に係るテンプレートの製造装置を例示する模式的断面図である。
【図2】第1の実施形態に係るテンプレートの製造装置の要部を例示する模式的断面図である。
【図3】第1の実施形態に係るテンプレートの製造装置の要部を例示する模式的平面図である。
【図4】第1の実施形態に係るテンプレートの製造装置の特性を例示する模式図である。
【図5】参考例のテンプレートの製造装置の特性を例示する模式図である。
【図6】第1の実施形態に係る変形例のテンプレートの製造装置の要部を例示する模式的断面図である。
【図7】第1の実施形態に係る変形例のテンプレートの製造装置の要部を例示する模式的平面図である。
【図8】第2の実施形態に係る変形例のテンプレートの製造方法を例示するフローチャート図である。
【発明を実施するための形態】
【0013】
以下に、本発明の各実施の形態について図面を参照しつつ説明する。
なお、図面は模式的または概念的なものであり、各部分の厚みと幅との関係、部分間の大きさの比係数などは、必ずしも現実のものと同一とは限らない。また、同じ部分を表す場合であっても、図面により互いの寸法や比係数が異なって表される場合もある。
また、本願明細書と各図において、既出の図に関して前述したものと同様の要素には同一の符号を付して詳細な説明は適宜省略する。
【0014】
(第1の実施の形態)
図1は、第1の実施形態に係るテンプレートの製造装置を例示する模式的断面図である。
図1に表したように、本実施形態に係るテンプレートの製造装置8は、真空容器11と、電極15と、調整体22と、を備える。
【0015】
真空容器11は、大気圧よりも減圧された雰囲気を維持可能とされている。真空容器11は、例えば、反応性ガスを導入するガス導入口17aと、排気口17と、を有する。
【0016】
真空容器11には、反応性ガスが導入され、一定の圧力制御が行われる。すなわち、真空容器11にはガス導入口17aが設けられ、所定のガスを真空容器11内に導入できる。そして、真空容器11に設けられた排気口17が真空ポンプ等に接続される。
【0017】
これにより、所定のガスを真空容器11内に導入し、そして、排気口17を通じて真空容器11内のガスを排気し、真空容器11内の圧力が所望の値に制御される。
【0018】
電極15は、真空容器11の内部に設けられる。例えば、真空容器11の内部の例えば絶縁性のステージ15sの上に電極15が設けられる。電極15には、テンプレートとなる基板14が載置される。
【0019】
電極15には、バイアス用高周波電源16(高周波電源)が接続され、これにより、電極15に高周波電圧(バイアス電圧)が印加され、その結果、電極15に載置された基板14にバイアス電界が印加される。
【0020】
本具体例の製造装置8は、誘導結合プラズマエッチング装置(Inductively Coupled Plasma Etching System)であり、電極15の上方における真空容器11に、誘導結合プラズマ発生源として、ICP(Inductively Coupled Plasma)高周波コイル12が設けられている。そして、ICP高周波コイル12は、ICP高周波電源13に接続されている。
【0021】
ICP高周波コイル12に印加されるICP高周波電圧によって、真空容器11内にプラズマが発生し、このプラズマ中の活性種が、電極15に印加されるバイアス電圧によって加速され、これにより、基板14の表面がエッチング加工される。ICP高周波コイル12は、誘導結合アンテナであり、螺旋状のコイルとしても良く、また平板状のコイルとしても良い。
【0022】
さらに、実施形態はこれに限らず、誘導結合プラズマエッチング装置の形態の他、反応性ガスプラズマを用いたプラズマエッチング装置の形態や、各種の反応性イオンエッチング装置(Reactive Ion Etching System:RIE)の形態としても良い。この場合には、ICP高周波コイル12及びICP高周波電源13は省略される。なお、例えば、平行平板型RIE装置の場合には、例えば電極15に対向して、平行平板電極が設けられる。このように、本実施形態においては、活性種を生成する構成は任意である。以下では、製造装置8が誘導結合プラズマエッチング装置である場合として説明する。
【0023】
一方、被加工物である基板14は、電極15に載置される。電極15の載置の状態は任意である。例えば、図1に例示したように、基板14は電極15の上に載置され、この場合は電極15が基板14に対向する面は上向き(重力の方向に対して逆向き)である。ただし、電極15の基板14に対向する面が、重力の方向沿って設けられても良く、また、下向き(重力の方向)に設けられても良く、さらに、これらの中間の方向であっても良い。
【0024】
すなわち、基板14は電極15の「上」に載置されるが、この場合の「上」とは、重力に対応させた上方向だけを意味しているのではなく、電極15と基板14とが互いに対向するように、基板14が載置されれば良い。
【0025】
以下では、図1に例示した、基板14が電極15の上に載置され、電極15が基板14に対向する面が上向きであり、すなわち、電極15の上面15uに基板14が載置される場合として説明する。
【0026】
製造装置8を用いたテンプレートの製造は、例えば、以下のように行われる。
まず、テンプレートとなる基板14を真空容器11内の電極15の上に載置する。
【0027】
基板14には、例えばクォーツ(SiO)が用いられる。そして、基板14上には、所定の形状のパターンを有するレジスト14rが形成されている。レジスト14rには、例えば、紫外光が照射されて硬化された光硬化樹脂レジストパターンが用いられる。すなわち、基板14の表面の一部は、所定のパターンを有するレジスト14rに覆われ、基板14の表面の他の一部は、露出している。このレジスト14rは設けられる面が、基板14の表側の面であり、加工面となる。
【0028】
続いて、真空容器11に設けられたガス導入口17aを通じて反応性ガスを導入し、真空容器11内のガスの流れを偏りが無い状態に均一化し、排気口17から真空容器11内のガスを排気して真空容器11内を所定の圧力にする。
【0029】
そして、ICP高周波電源13によりICP高周波コイル12に高周波を印加する。それにより、反応性ガスを励起して高密度プラズマを発生させ、エッチングに必要な活性種(イオンやラジカルを含む)を生成する。
【0030】
それと供に、バイアス用高周波電源16によって電極15にバイアス電圧を印加し、基板14に入射するイオン及びラジカルのエネルギーを制御する。
【0031】
これにより、レジスト14rから露出した基板14の表面が選択的にエッチングされ、基板14の表面に所望の微細な三次元形状の凹凸パターンが形成される。
【0032】
なお、反応性ガスとしては、例えばフッ素系ガスと酸素ガスとの混合ガスが用いられる。
【0033】
この時、本実施形態に係る製造装置8において使用される基板14の裏面(レジスト14rが設けられる表側の面とは反対側の面)には凹部14cが設けられており、この凹部14cに対応するように、電極15の上に凸形状の調整体22が設けられる。調整体22は、絶縁体を主成分とする。調整体22は、電極15の上に載置される基板14の電極15の側の面に設けられた凹部に挿入される。以下、この構成に関して、詳しく説明する。
【0034】
図2は、第1の実施形態に係るテンプレートの製造装置の要部を例示する模式的断面図である。
すなわち、同図(a)は、この製造装置に適用されるテンプレートとなる基板14を例示しており、同図(b)は、製造装置8の電極15を例示しており、同図(c)は、電極15に基板14が載置された状態を例示している。
図3は、第1の実施形態に係るテンプレートの製造装置の要部を例示する模式的平面図である。
【0035】
図2(a)に表したように、テンプレートとなる基板14の表側の面14a(表面)には、レジスト14rが設けられている。なお、本具体例では、表側の面14aの中央部に凸部14pが設けられ、その凸部14pの上にレジスト14rが設けられている。この凸部14pにより、後に、基板14の表側の面14aをシリコン基板の樹脂等に押し付ける際に効率的にパターン転写できる。ただし、この凸部14pは、必要に応じて設けられれば良く、省略しても良い。
【0036】
一方、基板14の表側の面14aとは反対側の裏面14bの例えば中央部には、凹部14cが設けられる。
【0037】
凹部14cは、深さd14を有している。深さd14は、基板14の裏面14bと、凹部14cの底面と、の間の距離である。
【0038】
図3に表したように、基板14の平面形状は例えば長方形であり、凹部14cの平面形状は例えば円形である。ただし、図3は一例であり、実施形態はこれに限らない。すなわち、基板14及び凹部14cの形状は任意であり、例えば、基板14が円形(または円形の一部)であり、凹部14cの形状が長方形であっても良い。また、基板14の大きさに対する凹部14cの相対的な大きさも任意である。
【0039】
このような凹部14cによって、例えば基板14が変形し易くなり、テンプレートを用いたパターン転写工程やテンプレートの剥離工程を容易化でき、結果としてスループットが向上できる。
【0040】
なお、凹部14cは、基板14の裏面14bを、例えば適切なマスクを形成してエッチングすることによって形成できる。また、この凹部14cの形成には、ウエットエッチングやドライエッチングの他、機械的な研磨を用いることができ、また、これらを組み合わせた方法を用いても良い。
【0041】
基板14のサイズは、例えば、6インチ角であり、基板14の厚さは、例えば5mm〜6mmであり、凹部14cの深さd14は、例えば4mm〜5mmである。凹部14cにおける基板14の厚さは、例えば約1mmである。
ただし、上記は一例であり、実施形態はこれに限らない。すなわち、基板14のサイズ、厚さ、凹部14cの深さd14、及び、凹部14cにおける基板14の厚さは、任意である。以下では、説明を簡単にするために、基板14の厚さが5mmであり、凹部14cの深さd14が4mmであり、凹部14cにおける基板14の厚さが1mmである場合として説明する。
【0042】
一方、図2(b)に表したように、電極15の基板14が載置される面には、凹部14cの底面と電極15の上面15uとの間の空隙を調整する調整体22(カバーブリッジプレート)が設けられる。調整体22は、電極15の上面15uよりも突出しており、基板14の凹部14cに対応した形状を有している。
【0043】
すなわち、図3に表したように、凹部14cが円形である場合には、調整体22も例えば円形とされ、調整体22は、調整体22の少なくとも一部が基板14の凹部14cの内部に入り込むことができるような形状を有している。
【0044】
調整体22には、例えば絶縁材料が用いられる。さらに、調整体22には、例えば基板14と同じ材料(例えばSiO)を用いることができ、これにより、調整体22は、基板14と同じ電気的特性を有することができ、後述する電位の変動の抑制効果を発揮し易くなる。但し、実施形態はこれに限らない。調整体22には、例えば、チタニア(TiO)含有石英材料を用いることができる。調整体22には、任意の絶縁体(誘電体を含む)を用いることができる。調整体22は高真空の雰囲気に置かれるので、調整体22には、真空中でガスを放出し難い材料を用いることが好ましい。
【0045】
なお、調整体22を電極15の上に配置する際には、調整体22の位置を固定するために、電極15に溝や孔等の凹部などを設け、その凹部に対応させた凸部を調整体22の電極15に対向する面に設け、調整体22と電極15との相対的な位置を固定することができる。なお、この凸部は、調整体22自身の形状としても良い。また、逆に、電極15に凸部を設け、その凸部に対応させた凹部を調整体22の電極15に対向する面に設け、調整体22と電極15との相対的な位置を固定することができる。また、調整体22と電極15との固定には、ネジなどの各種の固定治具を用いても良い。
【0046】
調整体22は、高さd22を有している。高さd22は、電極15の上面15uと、調整体22の上側の面と、の間の距離である。
【0047】
また、図2(b)に表したように、本具体例では、電極15の上面15u(基板14が載置される面)の周辺部には、基板14をガイドするガイドプレート21が設けられる。ガイドプレート21には、任意の材料を用いることができるが、基板14の表面における電位の分布に影響を与えないように、絶縁材料を用いることが望ましい。例えばガイドプレート21には、基板14に用いられる材料(例えばSiO)を用いることができる。また、ガイドプレート21には、チタニア(TiO)含有石英材料を用いることができる。但し、実施形態はこれに限らない。ガイドプレート21には、任意の絶縁体(誘電体を含む)を用いることができる。ガイドプレート21は高真空の雰囲気に置かれるので、ガイドプレート21には、真空中でガスを放出し難い材料を用いることが好ましい。
【0048】
ガイドプレート21には段部21aが設けられている。段部21aは、段差d21を有している。段差d21は、電極15の上面15uと、段部21aの上側の面と、の間の距離である。
段差d21は、例えば、0.15mm〜0.20mmである。ただし、これは一例であり、実施形態は、これに限らず、段差d21の大きさは任意である。以下では、簡単のために、段差d21が0.15mmである場合として説明する。
【0049】
図2(c)に表したように、電極15に基板14を載置した際には、基板14の端部が、電極15のガイドプレート21によってガイドされ、基板14は電極15の上の所定の位置に配置される。
【0050】
このとき、ガイドプレート21の段部21aによって、基板14は、電極15の上面15uに対して離間して配置される。これにより、基板14の裏面14bのガイドプレート21に対向する部分以外は、電極15の上面15uと接触することがないので、基板14の裏面14bにおける傷の発生や汚れの付着を防止できる。
【0051】
なお、基板14の裏面14bと、電極15の上面15uと、の間の距離t1は、ガイドプレート21の段部21aの段差d21と実質的に同じとなり、すなわち、距離t1は、段差d21によって制御できる。
【0052】
基板14の凹部14cの内部に、電極15の調整体22が入り込む。すなわち、例えば、電極15の調整体22の側面は、基板14の凹部14cの内側面に沿った形状とされ、調整体22の少なくとも一部が凹部14cの内部に格納されるようになっている。
【0053】
この時、凹部14cの深さd14は、調整体22の高さd22に対して適切な大きさに設定されており、凹部14cの底面は、調整体22の上面に対して離間可能となっている。これにより、基板14の凹部14cの底面と、調整体22の上面と、が接触することがないので、凹部14cの底面における傷の発生や汚れの付着を防止できる。
【0054】
基板14の凹部14cの底面と、調整体22の上面と、の間の距離t2は、段部21aの段差d21、凹部14cの深さd14、及び、調整体22の高さd22によって制御される。すなわち、段部21aの段差d21(すなわち距離t1)と、凹部14cの深さd14と、が固定された場合においても、調整体22の高さd22を変えることによって距離t2は任意に設定できる。
【0055】
ここで、距離t2は、(d21+d14−d22)となるので、調整体22の高さd22は、段差d21と凹部14cの深さd14との和よりも小さく設定される。そして、例えば距離t2を距離t1と同じに設定する際には、調整体22の高さd22は、深さd14と同じに設定すれば良い。
【0056】
このように、電極15の上面15uに基板14を載置したときに、基板14の縁部が、ガイドプレート21の段部21aによって支持され、基板14の裏面14bは電極15の上面から離間し、基板14の凹部14cの底面は調整体22の上面から離間可能となっている。
【0057】
基板14の裏面14bと電極15の上面15uとの間の距離t1と、基板14の凹部14cの底面と調整体22の上面との間の距離t2と、は、互いに独立して定めることができる。そして、距離t1と距離t2とは実質的に同じとすることができる。また、距離t1と距離t2とが互いに異なるように、距離t1及び距離t2を設定しても良い。
【0058】
このように、本実施形態に係る製造装置8においては、被加工物である基板14の裏面14bに設けられた凹部14cに適合する調整体22を電極15の上面15uに設けることで、基板14の凹部14cの底面と調整体22との間の距離t2を調整できる。
【0059】
すなわち、調整体22によって、基板14の凹部14cの電極15の側の空隙の幅を、調整体22が無いときの幅(すなわち、d21+d14)よりも、小さくする。本具体例では、基板14の凹部14cの電極15の側の空隙の幅を、(d21+d14−d22)に小さくする。
【0060】
これにより、基板14の裏面14bに凹部14cが設けられていても、基板14の表側の面14aの電位を、凹部14cが形成されている場所と形成されていない場所とに係わらず実質的に均一にすることができる。
【0061】
これにより、基板14の表側の面14aのドライエッチングの際の電位の変動を縮小し、ドライエッチング加工における面内のエッチングレートを均一化し、パターン精度が高いテンプレートが製造できる。
【0062】
また、基板14の凹部14cの底面と調整体22との間の距離t2を任意に調整することで、基板14の表側の面14aの電位の分布を制御して、基板14の面内でエッチングレートを変化させ、面内の所望の部分においてより高精度のパターンを実現することもできる。
【0063】
以下では、基板14の表側の面14aのドライエッチングの際の電位の変動を縮小し、ドライエッチング加工における面内のエッチングレートを均一化する例に関してさらに説明する。そして、一例として、基板14の凹部14cの底面と調整体22との間の距離t2を、基板14の裏面14bと電極15の上面15uとの間の距離t1と同じ値に設定する例を説明する。
【0064】
図4は、第1の実施形態に係るテンプレートの製造装置の特性を例示する模式図である。
すなわち、同図(a)は、電極15及び基板14における座標を例示しており、同図(b)は、電極15及び調整体22と基板14との間の空隙の幅の分布を例示しており、同図(c)は、基板14の表側の面14aにおける電位の分布を例示しており、同図(d)は、基板14の表側の面14aにおけるエッチングレートの分布を例示している。
【0065】
図4(a)に表したように、基板14における表側の面14aに対して平行な1つの方向をX軸とする。そして、このX軸において、基板14の端の位置を位置X0とし、基板14の他方の端の位置を位置X1とし、凹部14cの位置X0に近い方の端の位置を位置X2とし、凹部14cの他方の端の位置を位置X3とする。
【0066】
図4(b)、(c)及び(d)においては、横軸が位置Xを表し、縦軸は、それぞれ、電極15及び調整体22と基板14との間の空隙の幅Wg、基板14の表側の面14aにおける電位Vp、及び、基板14の表側の面14aにおけるエッチングレートERを示す。
【0067】
図4(b)に表したように、電極15及び調整体22と基板14との間の空隙の幅Wgは、位置XがX0〜X2及びX3〜X1の範囲では距離t1となり、X2〜X3の範囲では距離t2となる。この例では、距離t1と距離t2とは同じに設定されるので、電極15及び調整体22と基板14との間の空隙の幅Wgは一定となる。
【0068】
これにより、図4(c)に表したように、基板14の表側の面14aにおける電位Vpは実質的に一定となり、電位Vpの分布が均一化される。
【0069】
これにより、図4(d)に表したように、基板14の表側の面14aにおけるエッチングレートERは実質的に一定となり、エッチングレートERが均一になる。
【0070】
以下、調整体22を用いない参考例のテンプレートの製造装置の特性に関して説明する。
図5は、参考例のテンプレートの製造装置の特性を例示する模式図である。
すなわち、同図(b)、(c)及び(d)は、それぞれ、電極15と基板14との間の空隙の幅Wgの分布、基板14の表側の面14aにおける電位Vpの分布、及び、基板14の表側の面14aにおけるエッチングレートERの分布を例示している。
【0071】
図5(a)に表したように、参考例のテンプレートの製造装置においては、調整体22が設けられないので、電極15と基板14との間の空隙の幅Wgは、位置XがX0〜X2及びX3〜X1の範囲では距離t1であるが、X2〜X3の範囲では、(t1+d14)となる。すなわち、例えば、凹部14c以外の部分においては、電極15と基板14との間の空隙の幅Wgは0.15mmであり、凹部14cにおいては、幅Wgは4.15mmである。このように、参考例の場合は、凹部14cの有無によって空隙の幅Wgが大きく変化する。
【0072】
このため、図5(b)に表したように、基板14の表側の面14aにおける電位Vpは、凹部14cの位置に対応して大きく変化する。
【0073】
その結果、図5(c)に表したように、基板14の表側の面14aにおけるエッチングレートERは、凹部14cの位置に対応して大きく変化し、結果として、レジスト14rから露出した基板14の表側の面14aを加工して形成された三次元形状の凹凸パターンの大きさ(深さ・高さも含めて)のばらつきが大きくなる。
【0074】
これに対し、既に説明したように、本実施形態に係る製造装置8においては、調整体22を電極15の上面15uに設けることで、基板14の凹部14cの底面と調整体22との間の距離t2を調整して、空隙の幅Wgを一定とし、これにより、基板14の表側の面14aのドライエッチングの際の電位の変動を縮小し、ドライエッチング加工における面内のエッチングレートを均一化し、パターン精度が高いテンプレートが製造できる。
【0075】
これにより、本実施形態に係る製造装置8を用いてエッチング加工したテンプレート用の基板14においては、裏面に凹部が設けられない通常の光リソグラフィで用いられる光マスク(レチクル)基板と同等の、優れたエッチング加工精度を得ることができる。
【0076】
なお、図4は、本実施形態に係る製造装置8における特性をモデル的に説明したものであり、例えば、電位Vp及びエッチングレートERの分布は、図3(c)及び(d)に例示したように、必ずしも一定でなくても良い。すなわち、一般に、誘導結合プラズマエッチング装置のようなドライエッチング装置においては、装置の中心部と周辺部とでプラズマの密度に差があり、結果としてエッチングに寄与する活性種の密度に面内分布がある。このため、例えば、裏面14bに凹部14cが設けられない基板を用いた場合においても、エッチングレートERに面内分布が発生することがある。
【0077】
この時、裏面14bに凹部14cが形成された基板14の場合には、上記の参考例に関して説明したように、基板14と電極15との間の空隙の幅Wgが、凹部14cによって大きく変動し、これによるエッチングレートERの変動が非常に大きくなる。
【0078】
本実施形態に係る製造装置8においては、このエッチングレートERの変動が抑制されれば良く、必ずしも、エッチングレートERは面内において厳密に均一でなくても良い。
【0079】
すなわち、参考例においては、凹部14cによって、基板14と電極15との間の空隙の幅Wgが、距離t1〜(距離t1+深さd14)の幅で変動する(この例では0.15mm〜4.15mmで変動する)。これに対し、本実施形態に係る製造装置8においては、基板14と電極15との間の空隙の幅Wgが、この変動の幅よりも小さくなるようにされれば良い。
【0080】
また、本実施形態に係る製造装置8においては、距離t2を距離t1と同一にせず、例えば、エッチングに寄与する活性種の密度の面内分布を補償するように、距離t2を距離t1と異なるように設定しても良い。なお、既に説明したように、距離t2は、段部21aの段差d21(すなわち距離t1)と、凹部14cの深さd14と、が固定された場合においても、調整体22の高さd22を変えることによって任意に設定できる。
【0081】
すなわち、エッチングレートを面内で変化させることによって、高精度のパターンを広いマージンで加工でき、それと同時に、比較的低精度の部分の加工は高生産性で加工でき、全体として、高精度と高生産性を両立できる。
【0082】
図6は、第1の実施形態に係る変形例のテンプレートの製造装置の要部を例示する模式的断面図である。
図6(a)に表したように、調整体22において、その高さd22を中心部で高くし、周辺部で低くしても良い。すなわち、調整体22の上面は凸レンズ状の形状を有している。この場合、基板14と電極15との間の空隙(凹部14cと調整体22との間の空隙)の幅Wgは、中心部で小さく、周辺部で大きくなる。
【0083】
また、図6(b)に表したように、調整体22において、その高さd22を中心部で低くし、周辺部で高くしても良い。すなわち、調整体22の上面は凹レンズ状の形状を有している。この場合、基板14と電極15との間の空隙(凹部14cと調整体22との間の空隙)の幅Wgは、中心部で大きく、周辺部で小さくなる。
【0084】
また、図6(a)及び(b)に例示した形状だけでなく、調整体22は、基板14の凹部14cの内部にその一部が格納されれば良く、調整体22の断面形状は任意に設定できる。
【0085】
図7は、第1の実施形態に係る変形例のテンプレートの製造装置の要部を例示する模式的平面図である。
なお、これらの図においては、基板14及び基板14の凹部14cの平面形状も一緒に例示されている。
【0086】
図7(a)に表したように、基板14の凹部14cの平面形状が、丸みを帯びた角を有する長方形である場合、調整体22の平面形状は、その平面形状に対応させて、丸みを帯びた角を有する長方形とすることができる。
【0087】
図7(b)に表したように、基板14の平面形状は、一部にオリエンテーションフラットを有する円形であっても良い。そして、本具体例では、基板14の凹部14cの平面形状が、丸みを帯びた角を有する長方形であり、調整体22の平面形状が、その平面形状に対応させて、丸みを帯びた角を有する長方形とされている。
【0088】
図7(c)に表したように、基板14の凹部14cの平面形状が円形であり、そして、調整体22の平面形状は、丸みを帯びた角を有する長方形とされている。この場合、調整体22が設けられている部分においては、基板14の凹部14cと調整体22との間隙の幅Wgは距離t2であり、調整体22が設けられていない部分の凹部14cにおいては、基板14の凹部14cと電極15との間隙の幅Wgは(距離t1+深さd14)となる。
【0089】
このように、基板14の凹部14cの平面形状と調整体22の平面形状を異ならせることで、基板14の表側の面14aのエッチングレートERを、調整体22がある場所とない場所とで異ならせることができ、これを用いて、基板14の表側の面14aの加工精度を場所によって変化させることができる。そして、これを利用して、部分的により高い精度で加工することもできる。すなわち、加工精度の制御性と加工時間とをより高い自由度で制御することができ、加工精度と生産性とを向上させることもできる。
【0090】
なお、図6に関して説明した調整体22の高さd12の任意な設定と、図7(c)に関して説明した調整体22の平面形状の任意な設定と、を組み合わせて実施しても良い。
【0091】
図7(d)に表したように、1つの凹部14cに対応させて、2つの調整体22が設けられている。このように、複数の調整体22を設け、複数の調整体22を1つの凹部14cに入り込ませても良い。
【0092】
図7(e)に表したように、調整体22の平面形状は二次元的に配列したドット状としても良い。1つのドットの大きさとドットの密度とを適切に制御することで、調整体22の平面形状が一体的な形状である場合と実質的に同等の効果を発揮させることができる。すなわち、基板14の凹部14cと、電極15の上面15uと、の間の間隙の幅Wgを実質的に一体的な形状として制御することができる。なお、本具体例にように、調整体22をドットの集合体とすることで、ドットの配置の一部を変更するだけで、任意の形状の凹部14cに対応させて調整体22の形状を制御することが容易になる。また、調整体22の形状を任意の形状に制御することで、任意の形状に電位Vpを制御することが容易になり、便利である。
【0093】
(第2の実施の形態)
図8は、第2の実施形態に係る変形例のテンプレートの製造方法を例示するフローチャート図である。
図8に表したように、本実施形態に係るテンプレートの製造方法では、高周波電圧が印加される電極15の上に、テンプレートとなる基板であって、表面(表側の面14a)に加工面を有し、裏面に凹部14cを有する基板14を、前記裏面を電極15に対向させて配置する(ステップS110)。
【0094】
そして、凹部14cの内部に、絶縁体を主成分とする調整体22を挿入した状態で、前記加工面をドライエッチングする(ステップS120)。この調整体22は、凹部14cと電極15との間の間隙(間隙の幅Wg)を調整する絶縁体である。
【0095】
この製造方法においては、例えば第1の実施形態で説明した製造装置8を用いることができる。
【0096】
これにより、基板の裏面に凹部を有する場合においても、ドライエッチング加工における面内のエッチングレートを制御し、パターン精度に優れたテンプレートを製造することができる。
【0097】
なお、上記の調整体22の側面は、凹部14cの内側面に沿うように形成されることができる。これにより、凹部14cと電極15との間の間隙の幅Wgを効率良く制御することができる。これにより、電位を効率的に制御し、エッチングレートの分布を効率的に制御できる。
【0098】
実施形態によれば、基板の裏面に凹部を有する場合においても、ドライエッチング加工における面内のエッチングレートを制御し、パターン精度に優れたテンプレートの製造装置及びテンプレートの製造方法を提供することができる。
【0099】
以上、具体例を参照しつつ、本発明の実施の形態について説明した。しかし、本発明は、これらの具体例に限定されるものではない。例えば、テンプレートの製造装置を構成する真空容器、電極、バイアス用高周波電源、排気口及び調整体等、各要素の具体的な構成に関しては、当業者が公知の範囲から適宜選択することにより本発明を同様に実施し、同様の効果を得ることができる限り、本発明の範囲に包含される。
また、各具体例のいずれか2つ以上の要素を技術的に可能な範囲で組み合わせたものも、本発明の要旨を包含する限り本発明の範囲に含まれる。
【0100】
その他、本発明の実施の形態として上述したテンプレートの製造装置及びテンプレートの製造方法を基にして、当業者が適宜設計変更して実施し得る全てのテンプレートの製造装置及びテンプレートの製造方法も、本発明の要旨を包含する限り、本発明の範囲に属する。
【0101】
その他、本発明の思想の範疇において、当業者であれば、各種の変更例及び修正例に想到し得るものであり、それら変更例及び修正例についても本発明の範囲に属するものと了解される。
【0102】
本発明のいくつかの実施形態を説明したが、これらの実施形態は、例として提示したものであり、発明の範囲を限定することは意図していない。これら新規な実施形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更を行うことができる。これら実施形態やその変形は、発明の範囲や要旨に含まれるとともに、特許請求の範囲に記載された発明とその均等の範囲に含まれる。
【符号の説明】
【0103】
8…製造装置、 11…真空容器、 12…ICP高周波コイル、 13…ICP高周波電源、 14…基板、 14a…表側の面(表面)、 14b…裏面、 14c…凹部、 14p…凸部、 14r…レジスト、 15…電極、 15s…ステージ、 15u…上面、 16…バイアス用高周波電源、 17…排気口、 17a…ガス導入口、 21…ガイドプレート、 21a…段部、 22…調整体、 ER…エッチングレート、 Vp…電位、 Wg…間隙の幅(間隙)、 X、X0、X1、X2、X3…位置、 d12…高さ、 d14…深さ、 d21…段差、 d22…高さ、 t1、t2…距離

【特許請求の範囲】
【請求項1】
大気圧よりも減圧された雰囲気を維持可能とされ、反応性ガスの導入口と排気口とを有する真空容器と、
前記真空容器の内部に設けられ、高周波電圧が印加される電極と、
前記電極の上に載置される基板の前記電極の側の面に設けられた凹部に挿入される、絶縁体を主成分とする調整体と、
を備え、
前記調整体の側面は、前記凹部の内側面に沿い、前記調整体は、前記基板と同じ材料により形成されてなるテンプレートの製造装置。
【請求項2】
大気圧よりも減圧された雰囲気を維持可能とされ、反応性ガスの導入口と排気口とを有する真空容器と、
前記真空容器の内部に設けられ、高周波電圧が印加される電極と、
前記電極の上に載置される基板の前記電極の側の面に設けられた凹部に挿入される、絶縁体を主成分とする調整体と、
を備えたテンプレートの製造装置。
【請求項3】
前記調整体の側面は、前記凹部の内側面に沿う請求項2記載のテンプレートの製造装置。
【請求項4】
前記調整体は、前記基板と同じ材料により形成されてなる請求項2または3に記載のテンプレートの製造装置。
【請求項5】
高周波電圧が印加される電極の上に、テンプレートとなる基板であって表面に加工面を有し裏面に凹部を有する基板を、前記裏面を前記電極に対向させて配置し、
前記凹部の内部に、絶縁体を主成分とする調整体を挿入した状態で、前記加工面をドライエッチングするテンプレートの製造方法。
【請求項6】
前記調整体の側面は、前記凹部の内側面に沿う請求項5記載のテンプレートの製造方法。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate

【図7】
image rotate

【図8】
image rotate


【公開番号】特開2013−82082(P2013−82082A)
【公開日】平成25年5月9日(2013.5.9)
【国際特許分類】
【出願番号】特願2011−221841(P2011−221841)
【出願日】平成23年10月6日(2011.10.6)
【出願人】(000003078)株式会社東芝 (54,554)
【Fターム(参考)】