説明

光源装置

【課題】被観察部における励起光の照射範囲を変更可能とし、種々の大きさ関心領域に応じた蛍光画像を取得可能とする。
【解決手段】所定の導光部材LGの光入射端面60に入射される平行光を射出する平行光源部70と、平行光源部70から射出された平行光の光軸の導光部材LGの光軸に対する入射角度を変更することによって導光部材30gの光出射端面から射出される平行光の照射範囲を変更する照射範囲変更部(たとえばダイクロイックミラー56およびその移動機構57)とを備える。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、所定の導光部材の光入射端面に対して平行光を入射する光源装置に関するものである。
【背景技術】
【0002】
従来、体腔内の組織を観察する内視鏡システムが広く知られており、白色光の照射によって体腔内の被観察部を撮像して通常画像を得、この通常画像をモニタ画面上に表示する電子式内視鏡システムが広く実用化されている。
【0003】
そして、このような内視鏡システムの1つとして、たとえば、脂肪下の血管走行および血流、リンパ管、リンパ流、胆管走行、胆汁流など通常画像上には現れないものを観察するため、予め被観察部にICG(インドシアニングリーン)を投入し、被観察部に近赤外光の励起光を照射することによってICGの蛍光画像を取得する内視鏡システムが提案されている。また、被観察部に励起光を照射することによって被観察部から発せられた自家蛍光を検出して蛍光画像を取得する内視鏡システムも提案されている。
【0004】
そして、たとえば、特許文献1においては、上述したように被観察部に励起光を照射して蛍光画像を撮像するとともに、白色光を被観察部に照射して通常画像を撮像する内視鏡システムが提案されている。
【0005】
ここで、特許文献1における内視鏡システムにおいては、蛍光画像と通常画像とを重ね合わせて診断用画像を生成する際、これらの画像が互いに対応したものとなるように被観察部への励起光の照射範囲と白色光の照射範囲とを一致させることが提案されている。
【0006】
より具体的には、特許文献1においては、ランプから射出された励起光をリフレクタによって反射させることによって比較的ビーム幅の広い平行光を生成し、この平行光からなる励起光のみが入射されるズームレンズの焦点距離を変更することによって、励起光を導光するライトガイドの光入射端面への励起光の集光角を変更し、これにより励起光の照射範囲を白色光の照射範囲に一致させることが提案されている。
【先行技術文献】
【特許文献】
【0007】
【特許文献1】特開2002−65602号公報
【発明の概要】
【発明が解決しようとする課題】
【0008】
しかしながら、特許文献1に記載の内視鏡システムのようにズームレンズの焦点距離を変更することによって励起光の集光角を変更するようにした場合、比較的ビーム幅の広い励起光に対しては有意な差をもって集光角を変更することが可能であるが、レーザダイオードや発光ダイオードなどから射出された比較的ビーム幅が狭い励起光の集光角をズームレンズを用いて変更するようにした場合、もともとのビーム幅が狭いのでズームレンズの焦点距離を変更したとしてもその集光角を十分に変更することができず、その結果、励起光の照射範囲を十分に変更することができない問題がある。
図16は、ビーム幅wが2mmのレーザ光の集光角(入射角)をズームレンズの焦点距離を変更することによって変化させた場合のグラフを示すものである。なお、ズームレンズとしてはThorlabs製のMVL7000を用い、焦点距離fは18mm〜108mmまで変化させている。このときのレーザ光の集光角(入射角)θの変化はθ=arctan(w/2f)で表すことができ、0.5°≦θ≦3°であった。
一方、上述したような蛍光画像を撮像する内視鏡システムにおいては、たとえば励起光の照射範囲を比較的広くし、肺や肝臓の全体像など比較的広い視野の蛍光画像を撮像したい場合や、励起光の照射範囲を局所的な狭い範囲に限定して高照度で照射し、リンパ節や管などの小構造の蛍光画像を高画質で撮像したい場合など種々の大きさの関心領域の蛍光画像を撮像した場合があるが、特許文献1に記載の光源装置の構成では、このような種々の蛍光画像を取得するために励起光の照射範囲を十分に変更することができない。
【0009】
本発明は、上記の問題に鑑み、被観察部における励起光の照射範囲を十分に変更することができ、種々の大きさの関心領域に応じた蛍光画像を取得することができる光源装置を提供することを目的とする。
【課題を解決するための手段】
【0010】
本発明の光源装置は、所定の導光部材の光入射端面に入射される平行光を射出する平行光源部と、平行光源部から射出された平行光の光軸の導光部材の光軸に対する入射角度を変更することによって導光部材の光出射端面から射出される平行光の照射範囲を変更する照射範囲変更部とを備えたことを特徴とする。
【0011】
また、上記本発明の光源装置においては、平行光源部から射出された平行光を導光部材の光入射端面に集光する集光レンズを設け、照射範囲変更部を、集光レンズへの平行光の入射位置を変更することによって平行光の導光部材の光軸に対する入射角度を変更するものとすることができる。
【0012】
また、平行光源部から射出された平行光を集光レンズに向けて反射する反射部材を設け、照射範囲変更部を、反射部材を集光レンズの光軸方向または光軸に直交すする方向に移動させることによって集光レンズへの平行光の入射位置を変更するものとできる。
【0013】
また、平行光源部から射出された平行光を集光レンズに向けて反射する反射部材を設け、照射範囲変更部を、平行光源部を集光レンズの光軸方向に移動させることによって集光レンズへの平行光の入射位置を変更するものとできる。
【0014】
また、複数の平行光源部を設けるとともに、その複数の平行光源部から射出された平行光を集光レンズに向けて反射する反射部材を設け、複数の平行光源部を、各平行光源部から射出された平行光が反射部材上の互いに異なる位置に照射されるように配置するとともに、照射範囲変更部を、各平行光源部からの平行光の射出を切り替えることによって集光レンズへの平行光の入射位置を変更するものとできる。
【0015】
また、平行光とは異なる波長帯域の光を射出する光源を設け、反射部材を、その光源から射出された光の光路上に配置することができる。
【0016】
また、反射部材として、上記光源から射出された光を透過させるとともに、平行光を反射するダイクロイックミラーを用いることができる。
【0017】
また、反射部材として、任意の波長を反射するミラー部材を用いることができる。
【0018】
また、平行光源部を、集光レンズの光軸方向に配置するとともに、照射範囲変更部を、平行光源部を集光レンズの光軸に直交する方向に移動させることによって集光レンズへの平行光の入射位置を変更するものとできる。
【0019】
また、集光レンズの光軸方向に直交する方向に複数の平行光源部を配置し、照射範囲変更部を、各平行光源部からの平行光の射出を切り替えることによって集光レンズへの平行光の入射位置を変更するものとできる。
【0020】
また、平行光源部を、レーザダイオードまたは発光ダイオードを備えたものとできる。
【0021】
また、平行光源部を、平行光として近赤外光を射出するものとできる。
【発明の効果】
【0022】
本発明の光源装置によれば、平行光源部から射出された平行光の光軸の導光部材の光軸に対する入射角度を変更することによって導光部材の光出射端面から射出される平行光の照射範囲を変更可能としたので、上述したような種々の大きさの関心領域に応じた励起光の照射範囲に変更することができ、種々の大きさの関心領域に応じた蛍光画像を取得することができる。
【図面の簡単な説明】
【0023】
【図1】本発明の光源装置の一実施形態を用いた硬性鏡システムの概略構成図
【図2】体腔挿入部の概略構成図
【図3】撮像ユニットの概略構成図
【図4】画像処理装置および第1の実施形態の光源装置の概略構成を示す図
【図5】ライトガイドの光入射端面の垂直方向に対して入射角20°だけ傾斜させた方向から励起光を入射した場合の照度分布と、ライトガイドの光入射端面に対して垂直方向から励起光を入射した場合の照度分布との実験データを示すグラフ
【図6】本発明の第2の実施形態の光源装置の概略構成を示す図
【図7】本発明の第3の実施形態の光源装置の概略構成を示す図
【図8】本発明の第4の実施形態の光源装置の概略構成を示す図
【図9】本発明の第5の実施形態の光源装置の概略構成を示す図
【図10】本発明の第6の実施形態の光源装置の概略構成を示す図
【図11】本発明の第5の実施形態の光源装置に遮光部材を設けた場合の概略構成を示す図
【図12】本発明の第7の実施形態の光源装置の概略構成を示す図
【図13】本発明の第8の実施形態の光源装置の概略構成を示す図
【図14】本発明の第9の実施形態の光源装置の概略構成を示す図
【図15】本発明の第10の実施形態の光源装置の概略構成を示す図
【図16】ズームレンズの焦点距離を変更したときのレーザ光の集光角の変化を示すグラフ
【図17】レーザ光の集光レンズへの入射高を変更したときのレーザ光のライトガイドへの入射角度の変化を示すグラフ
【発明を実施するための形態】
【0024】
以下、図面を参照して本発明の光源装置の第1の実施形態を用いた硬性鏡システムについて詳細に説明する。本実施形態の硬性鏡システムは、その光源装置の構成に特徴を有するものであるが、まずは硬性鏡システム全体の構成について説明する。図1は、本実施形態の硬性鏡システム1の概略構成を示す外観図である。
【0025】
本実施形態の硬性鏡システム1は、図1に示すように、白色の通常光および励起光を射出する光源装置2と、光源装置2から射出された通常光および励起光を導光して被観察部に照射するとともに、通常光の照射により被観察部から反射された反射光に基づく通常像および励起光の照射により被観察部から発せられた蛍光に基づく蛍光像を撮像する硬性鏡撮像装置10と、硬性鏡撮像装置10によって撮像された画像信号に所定の処理を施すプロセッサ3と、プロセッサ3において生成された表示制御信号に基づいて被観察部の通常画像および蛍光画像を表示するモニタ4とを備えている。
【0026】
硬性鏡撮像装置10は、図1に示すように、体腔内に挿入される体腔挿入部30と、体腔挿入部30によって導光された被観察部の通常像および蛍光像を撮像する撮像ユニット20とを備えている。
【0027】
また、硬性鏡撮像装置10は、図2に示すように、体腔挿入部30と撮像ユニット20とが着脱可能に接続されている。そして、体腔挿入部30は、接続部材30a、挿入部材30b、ケーブル接続部30c、照射窓30dおよび撮像窓30eを備えている。
【0028】
接続部材30aは、体腔挿入部30(挿入部材30b)の撮像ユニット20側の一端部30Xに設けられており、たとえば撮像ユニット20に形成された開口20aに嵌め合わされることにより、撮像ユニット20と体腔挿入部30とが着脱可能に接続される。
【0029】
挿入部材30bは、体腔内の撮影を行う際に体腔内に挿入されるものであって、硬質な材料から形成され、たとえば、直径略5mmの円柱形状を有している。体腔挿入部30の内部には、撮像窓30eから入射された被観察部の通常像および蛍光像を結像し、体腔挿入部30の撮像ユニット20側の一端部30Xまで導光してその一端部30Xから出射させるリレーレンズ30f(図4参照)が設けられている。このリレーレンズ30fから出射された通常像および蛍光像が撮像ユニット20に入射される。
【0030】
挿入部材30bの側面には、図2に示すように、ケーブル接続部30cが設けられており、このケーブル接続部30cに対してライトガイドLGがコネクタCによって機械的に接続される。これにより、光源装置2と挿入部材30bとがライトガイドLGを介して光学的に接続されることになる。そして、体腔挿入部30の内部には、ケーブル接続部30cに接続されたライトガイドLGから発せられた通常光および励起光を導光するバンドル化されたマルチモード光ファイバ30g(図4参照)が設けられており、このマルチモード光ファイバ30gは、入射された通常光および励起光を挿入部材30bの先端部30Yまで導光して被観察部に向けて照射するものである。挿入部材30b内に設けられたマルチモード光ファイバ30gは、その先端が研磨されて照射窓30dが形成されている。
【0031】
図3は、撮像ユニット20の概略構成を示す図である。撮像ユニット20は、体腔挿入部30内のリレーレンズ30fにより結像された被観察部の蛍光像L6を撮像して被観察部の蛍光画像信号を生成する第1の撮像系と、体腔挿入部30内のリレーレンズ30fにより結像された被観察部の通常像L5を撮像して通常画像信号を生成する第2の撮像系とを備えている。これらの撮像系は、通常像L5を反射するとともに、蛍光像L6を透過する分光特性を有するダイクロイックプリズム21によって、互いに直交する2つの光軸に分けられている。
【0032】
第1の撮像系は、被観察部において反射し、ダイクロイックプリズム21を透過した励起光の波長以下の光をカットするとともに、後述する蛍光波長域照明光を透過する励起光カットフィルタ22と、体腔挿入部30から射出され、ダイクロイックプリズム21および励起光カットフィルタ22を透過した蛍光像L6を結像する第1結像光学系23と、第1結像光学系23により結像された蛍光像L6を撮像する高感度撮像素子24とを備えている。
【0033】
高感度撮像素子24は、蛍光像L6の波長帯域の光を高感度に検出し、蛍光画像信号に変換して出力するものである。高感度撮像素子24としては、たとえばモノクロの撮像素子を用いることができる。
【0034】
第2の撮像系は、体腔挿入部30から射出され、ダイクロイックプリズム21を反射した通常像L5を結像する第2結像光学系25と、第2結像光学系25により結像された通常像L5を撮像する撮像素子26を備えている。
【0035】
撮像素子26は、通常像の波長帯域の光を検出し、通常画像信号に変換して出力するものである。撮像素子26の撮像面には、3原色の赤(R)、緑(G)および青(B)、またはシアン(C)、マゼンダ(M)およびイエロー(Y)のカラーフィルタがベイヤー配列またはハニカム配列で設けられている。
【0036】
また、撮像ユニット20は、撮像制御ユニット27を備えている。撮像制御ユニット27は、高感度撮像素子24から出力された蛍光画像信号と撮像素子26から出力された通常画像信号とに対し、CDS/AGC(相関二重サンプリング/自動利得制御)処理やA/D変換処理を施し、ケーブル5(図1参照)を介してプロセッサ3に出力するものである。
【0037】
プロセッサ3は、図4に示すように、通常画像入力コントローラ41、蛍光画像入力コントローラ42、画像処理部43、メモリ44、ビデオ出力部45、操作部46、TG(タイミングジェネレータ)47およびCPU48を備えている。
【0038】
通常画像入力コントローラ41および蛍光画像入力コントローラ42は、所定容量のラインバッファを備えており、通常画像入力コントローラ41は、撮像ユニット20の撮像制御ユニット27から出力された1フレーム毎の通常画像信号を一時的に記憶するものであり、蛍光画像入力コントローラ42は、蛍光画像信号を一時的に記憶するものである。そして、通常画像入力コントローラ41に記憶された通常画像信号および蛍光画像入力コントローラ42に記憶された蛍光画像信号はバスを介してメモリ44に格納される。
【0039】
画像処理部43は、メモリ44から読み出された1フレーム毎の通常画像信号および蛍光画像信号が入力され、これらの画像信号に所定の画像処理を施し、バスに出力するものである。
【0040】
ビデオ出力部45は、画像処理部43から出力された通常画像信号および蛍光画像信号がバスを介して入力され、所定の処理を施して表示制御信号を生成し、その表示制御信号をモニタ4に出力するものである。
【0041】
操作部46は、種々の操作指示や制御パラメータなどの操作者による入力を受け付けるものである。後で詳述するが、特に、本実施形態においては励起光の照射範囲の変更を受け付けるものである。
【0042】
TG47は、撮像ユニット20の高感度撮像素子24、撮像素子26および後述する光源装置2のLDドライバ53を駆動するための駆動パルス信号を出力するものである。CPU48は装置全体を制御するものである。
【0043】
プロセッサ3と撮像ユニット20とは、図1および図4に示すように、ケーブル5を介して接続されるものである。ケーブル5は、撮像ユニット20で撮像された通常画像信号や蛍光画像信号を伝搬する信号配線やプロセッサ3から出力された制御信号を伝達する制御配線などを備えたものである。ケーブル5の先端にはコネクタ5aとコネクタ5bとが設けられており、ケーブル5はコネクタ5aを介してプロセッサ3に着脱可能に接続され、コネクタ5bを介して撮像ユニット20に着脱可能に接続されるものである。
【0044】
光源装置2は、図4に示すように、約400〜700nmの広帯域の波長からなる通常光(白色光)L1を拡散光として射出する可視光ランプ50と、可視光ランプ50から射出された通常光L1を略平行光にして射出する非球面レンズ51と、750〜790nmの近赤外光である励起光L2を射出する近赤外レーザダイオード52と、近赤外レーザダイオード52を駆動するLDドライバ53と、近赤外レーザダイオード52から射出された励起光L2が入射されて平行光として射出するコリメートレンズ54と、コリメートレンズ54から射出された励起光L2を後述する集光レンズ55に向けて反射するとともに、非球面レンズ51から射出された通常光L1を透過するダイクロイックミラー56と、非球面レンズ51から射出された通常光L1とダイクロイックミラー56によって反射された励起光L2とを集光して、上述したライトガイドLGの光入射端面60に入射させる集光レンズ55とを備えている。なお、本実施形態においては、上記近赤外レーザダイオード52とコリメートレンズ54とから平行光源部70が構成されている。
【0045】
可視光ランプ50としてはたとえばキセノンランプが用いられる。また、本実施形態においては、励起光を射出する光源として近赤外レーザダイオードを用いるようにしたが、近赤外発光ダイオードを用いるようにしてもよい。
【0046】
ダイクロイックミラー56は、上述したように通常光L1を透過するとともに、励起光L2を反射するものであり、集光レンズ55の光軸方向に対して45°の傾きをもって配置されている。また、ダイクロイックミラー56は、非球面レンズ51から射出された通常光L1の光路上に配置されるものである。
【0047】
近赤外レーザダイオード52およびコリメートレンズ54は、その励起光L2の射出方向が集光レンズ55の光軸に直交する方向となるように配置されている。
【0048】
さらに、光源装置2には、ダイクロイックミラー56を集光レンズ55の光軸方向(矢印A方向)に移動させる移動機構57(照射範囲変更部)が設けられている。この移動機構57としては、公知のアクチュエータを用いることができる。
【0049】
そして、この移動機構57によってダイクロイックミラー56を矢印A方向に移動させることによって、ダイクロイックミラー56上における励起光L2の反射位置が変化し、これにより集光レンズ55への励起光L2の入射位置が変更される。具体的には、ダイクロイックミラー56が、図4に示す集光レンズ55側に位置する場合には、励起光L2はダイクロイックミラー56によって反射されて励起光L3として集光レンズ55に入射され、ダイクロイックミラー56が、図4に示す可視光ランプ50側に位置する場合には、励起光L2はダイクロイックミラー56によって反射されて励起光L4として集光レンズ55に入射される。すなわち、ダイクロイックミラー56が集光レンズ55側に近づくほど集光レンズ55への励起光L2の入射位置が、集光レンズ55の光軸から離れた位置に変更されることになる。
【0050】
そして、上述したように集光レンズ55への励起光の入射位置が変更されると、ライトガイドLGの光入射端面60への励起光の光軸の入射角度が変更される。具体的には、図4に示すように励起光L3の方が励起光L4よりも光入射端面60の垂直方向に対する入射角度が大きくなることになる。
【0051】
このようにライトガイドLGの光入射端面60に対する励起光の入射角度を変更すると、その入射角度の大きさに応じて被観察部に照射される励起光の照射範囲を変更することができる。すなわち、図4に示すように、ライトガイドLGの光入射端面60の垂直方向に対する入射角度が大きい励起光L3の方が、励起光L4よりも被観察部における照射範囲が広がることになる。
【0052】
ここで、上述したようにライトガイドLGの光入射端面60への励起光の入射角度を変更することによって励起光の照射範囲が変更されることを示す実験データを図5に示す。図5は、ライトガイドLGの光入射端面60の垂直方向に対して入射角20°だけ傾斜させた方向から励起光を入射した場合の照度分布と、ライトガイドLGの光入射端面60に対して垂直方向から励起光を入射した場合の照度分布との実験データを示したものである。図5に示すように、ライトガイドLGの光入射端面60の垂直方向に対して入射角20°だけ傾斜させた方向から励起光を入射した場合、ライトガイドLGのマルチモード光ファイバ内を伝搬して出射される励起光は、ピークを有する照度分布を2つ形成することになる。そして、これらの2つの照度分布が一部だけ重なりを持って分布することによって比較的広い範囲の照度分布を形成することができる。ただし、入射角を大きくし過ぎると2つの照度分布間の距離が大きくなるとともにその照度も小さくなり、十分な照度の励起光を照射することができなくなるので所定の上限値以内の範囲で入射角を設定することが望ましい。
【0053】
また、ライトガイドLGの光入射端面60への励起光の入射角度と励起光の照射範囲との関係を定量的に説明すると、まず、図4に示すように、ライトガイドLGの光入射端面60への励起光の入射角度をθin、体腔挿入部30内のマルチモード光ファイバ30gからの励起光の出射角度をθout、集光レンズ55への励起光の入射高h(ダイクロイックミラー56の光軸方向への移動量x)とするとこれらの関係は下式を満たすものとなる。ただし、θin=θoutはθin≦θmax(=arcsin(NA))のときに成立するものである。
θout=θin=arctan(h/f)=arctan(x/f)
f:集光レンズ55の焦点距離
【0054】
したがって、励起光の照射範囲の半径rは、励起光の入射高h(ダイクロイックミラー56の移動量x)に応じて、下式を満たすように変化することになる。
r=d・tan(θout)=d・h/f=d・x/f
d:体腔挿入部30の先端と被観察部との距離
【0055】
なお、図4においては、ライトガイドLGの光入射端面60への入射角として2つの入射角を示しているが、すなわちダイクロイックミラー56の位置として2つの位置を示しているが、これに限らず、ダイクロイックミラー56の移動量および移動方向(集光レンズ55側または可視光ランプ50側)は、プロセッサ3の操作部46を用いて使用者によって任意に設定可能なものである。そして、これにより被観察部への励起光の照射範囲が任意に変更される。
【0056】
また、集光レンズ55によって集光された通常光L1および励起光L3,L4が入射されるライトガイドLGの先端にはコネクタ61が設けられており、ライトガイドLGはこのコネクタ61を介して光源装置2に着脱可能に接続されるものである。ライトガイドLGは、たとえばバンドル化されたマルチモード光ファイバから構成されるものである。
【0057】
また、本実施形態においては、励起光L2を集光レンズ55に向けて反射するものとしてダイクロイックミラー56を用いるようにしたが、ダイクロイックミラー56ではなく、任意の波長を反射する単なるミラーを用いるようにしてもよい。なお、図4においては、集光レンズ55への励起光の入射位置の変化を明確に示すためにミラーを大きく記載しているが、実際は、非球面レンズ51の大きさに対して十分に小さいものとすることができ、また、非球面レンズ51から射出される通常光L1の光量も十分に大きなものであるので、ミラーによる通常光L1のケラレは特に問題ないものである。
【0058】
また、本実施形態においては、励起光として近赤外光を用いるようにしたが、これに限らず、広帯域の波長からなる通常光よりも狭帯域の波長が用いられる。そして、励起光は、上記波長域の光に限定されず、蛍光色素の種類もしくは自家蛍光させる生体組織の種類によって適宜決定されるものである。
【0059】
次に、本実施形態の硬性鏡システムの作用について説明する。
【0060】
まず、光源装置2に接続されたライトガイドLGのコネクタCが体腔挿入部30の挿入部材30bのケーブル接続部30cに接続されるとともに、プロセッサ3に接続されたケーブル5のコネクタ5bが撮像ユニット20に接続される。
【0061】
次に、光源装置2の電源がオンされた後、使用者により体腔挿入部30が体腔内に挿入され、体腔挿入部30の先端が被観察部の近傍に設置される。
【0062】
そして、光源装置2の可視光ランプ50から通常光L1が射出され、その通常光L1は非球面レンズ51によって略平行光にされたあと集光レンズ55に入射され、集光レンズ55によってライトガイドLGの光入射端面60に入射される。一方、光源装置2の
近赤外レーザダイオード52から励起光L2が射出され、その励起光L2はコリメートレンズ54を透過したあとダイクロイックミラー56に入射される。
【0063】
なお、このときのダイクロイックミラー56は、使用者によって操作部46において設定入力された励起光の照射範囲に応じた位置に移動機構57によって配置されているものとする。
【0064】
そして、ダイクロイックミラー56に入射された励起光L2は集光レンズ55に向けて反射されたあと集光レンズ55に入射され、集光レンズ55によってライトガイドLGの光入射端面60に対してその設定された照射範囲に応じた入射角度をもって入射される。
【0065】
そして、上述したようにしてライトガイドLGの光入射端面60に入射された通常光L1と励起光L2とはライトガイドLGによって導光されて体腔挿入部30内のマルチモード光ファイバ30gの光入射端面から入射され、マルチモード光ファイバ30gによって導光された通常光L1および励起光L3または励起光L4が体腔挿入部30の先端から被観察部に向けて照射される。
【0066】
そして、上述したような通常光L1の照射によって被観察部から反射された反射光に基づく通常像が撮像されるとともに、励起光L3またはL4の照射によって被観察部から発せられた蛍光に基づく蛍光像が撮像される。なお、被観察部には、予めICGが投与されており、このICGから発せられる蛍光を撮像するものとする。
【0067】
具体的には、通常像の撮像の際には、通常光L1の照射によって被観察部から反射された反射光に基づく通常像L5が挿入部材30bの先端部30Yから入射し、挿入部材30b内のリレーレンズ30fにより導光されて撮像ユニット20に向けて射出される。
【0068】
撮像ユニット20に入射された通常像L5は、ダイクロイックプリズム21により撮像素子26に向けて直角方向に反射され、第2結像光学系25により撮像素子26の撮像面上に結像され、撮像素子26によって所定のフレームレートで順次撮像される。
【0069】
撮像素子26から順次出力された通常画像信号は、撮像制御ユニット27においてCDS/AGC(相関二重サンプリング/自動利得制御)処理やA/D変換処理が施された後、ケーブル5を介してプロセッサ3に順次出力される。
【0070】
そして、プロセッサ3に入力された通常画像信号は、通常画像入力コントローラ41において一時的に記憶された後、メモリ44に格納される。そして、メモリ44から読み出された1フレーム毎の通常画像信号は、画像処理部43において階調補正処理およびシャープネス補正処理が施された後、ビデオ出力部45に順次出力される。
【0071】
そして、ビデオ出力部45は、入力された通常画像信号に所定の処理を施して表示制御信号を生成し、1フレーム毎の表示制御信号をモニタ4に順次出力する。そして、モニタ4は、入力された表示制御信号に基づいて通常画像を表示する。
【0072】
一方、蛍光像の撮像の際には、励起光L3またはL4の照射によって被観察部から発せられた蛍光に基づく蛍光像L6が挿入部材30bの先端部30Yから入射し、挿入部材30b内のリレーレンズ30fにより導光されて撮像ユニット20に向けて射出される。
【0073】
撮像ユニット20に入射された蛍光像L6は、ダイクロイックプリズム21および励起光カットフィルタ22を通過した後、第1結像光学系23により高感度撮像素子24の撮像面上に結像され、高感度撮像素子24によって所定のフレームレートで撮像される。
【0074】
高感度撮像素子24から順次出力された蛍光画像信号は、撮像制御ユニット27においてCDS/AGC(相関二重サンプリング/自動利得制御)処理やA/D変換処理が施された後、ケーブル5を介してプロセッサ3に順次出力される。
【0075】
そして、プロセッサ3に入力された蛍光画像信号は、蛍光画像入力コントローラ42において一時的に記憶された後、メモリ44に格納される。そして、メモリ44から読み出された1フレーム毎の蛍光画像信号は、画像処理部43において所定の画像処理が施された後、ビデオ出力部45に順次出力される。
【0076】
そして、ビデオ出力部45は、入力された蛍光画像信号に所定の処理を施して表示制御信号を生成し、1フレーム毎の表示制御信号をモニタ4に順次出力する。そして、モニタ4は、入力された表示制御信号に基づいて蛍光画像を表示する。
【0077】
そして、上述したように蛍光画像を一旦表示したあと、使用者が励起光の照射範囲を変更したいと考えた場合には、操作部46において使用者による励起光の照射範囲の変更指示が設定入力される。
【0078】
そして、操作部46において設定入力された励起光の照射範囲に応じて移動機構57によってダイクロイックミラー56が矢印A方向に移動し、これによりライトガイドLGの光入射端面60への励起光の入射角度が変更されることによって、被観察部への励起光の照射範囲が変更される。
【0079】
上記実施形態の硬性鏡システムによれば、励起光のライトガイドLGの光軸に対する入射角度を変更することによって体腔挿入部30の光出射端面から射出される励起光の照射範囲を変更可能としたので、肺や肝臓、もしくはリンパ節や管などの種々の大きさの関心領域に応じた励起光の照射範囲に変更することができ、その種々の大きさの関心領域に応じた蛍光画像を取得することができる。
図17は、従来のズームレンズを用いた方法との作用効果の違いを示すためのグラフである。具体的には、図17は、ビーム幅が2mmのレーザ光の集光レンズ55への入射位置(入射高h)を変更した場合におけるレーザ光のライトガイドLGへの入射角度の変化を示したものである。なお、集光レンズ55としてはEdmund製の66315-Lを用い、その焦点距離fは37.5mmであり、直径は50mmである。このときのレーザ光のライトガイドLGへの入射角度θinの変化はθin=arctan(h/f)で表すことができ、0<θin≦30°であった。
【0080】
次に、以下、本発明の第2〜10の実施形態の光源装置を用いた硬性鏡システムについて説明する。第2〜10の実施形態の光源装置を用いた硬性鏡システムは、その光源装置の構成のみが上記第1の実施形態の硬性鏡システムと異なるので光源装置の構成のみについて説明する。
【0081】
上記第1の実施形態の光源装置2においては、ダイクロイックミラー56を集光レンズ55の光軸方向に移動させるようにしたが、これに対し第2の実施形態の光源装置6は、図6に示すようにダイクロイックミラー56を集光レンズ55の光軸方向に直交する方向(矢印B方向)に移動させるようにしたものである。このようにダイクロイックミラー56を矢印B方向に移動させた場合にも、上記第1の実施形態の光源装置2と同様に、集光レンズ55への励起光の入射位置を変更することができるのでライトガイドLGの光入射端面60への励起光の光軸の入射角度を変更することができ、これにより励起光の被観察部への照射範囲を変更することができる。
【0082】
次に、本発明の第3の実施形態の光源装置について説明する。上記第1および第2の実施形態の光源装置2においては、ダイクロイックミラー56を移動させることによって集光レンズ55への励起光の入射位置を変更するようにしたが、これに対し第3の実施形態の光源装置7は、図7に示すようにダイクロイックミラー56は所定位置に固定したままとし、近赤外レーザダイオード52とコリメートレンズ54とを備えた平行光源部70を移動機構58によって集光レンズ55の光軸方向(矢印C方向)に移動させるようにしたものである。
【0083】
このように近赤外レーザダイオード52およびコリメートレンズ54を矢印C方向に移動させた場合にも、ダイクロイックミラー56上の励起光の反射位置を変更することができるので、上記第1および第2の実施形態の光源装置2と同様に、集光レンズ55への励起光の入射位置を変更することができ、これによりライトガイドLGの光入射端面60への励起光の光軸の入射角度を変更して励起光の被観察部への照射範囲を変更することができる。
【0084】
次に、本発明の第4の実施形態の光源装置について説明する。上記第3の実施形態の光源装置7においては、近赤外レーザダイオード52とコリメートレンズ554とを備えた平行光源部70を移動させることによって、ダイクロイックミラー56上における励起光の反射位置を変更するようにしたが、これに対し第4の実施形態の光源装置8は、図8に示すように、近赤外レーザダイオード52aとコリメートレンズ54aとを備えた第1の平行光源部70aと、近赤外レーザダイオード52bとコリメートレンズ54bとを備えた第2の平行光源部70bとを集光レンズ55の光軸方向に配列し、LDドライバ53(照射範囲変更部)によって近赤外レーザダイオード52aからの励起光L2の射出と近赤外レーザダイオード52bからの励起光L2’の射出とを切り替えるようにしたものである。
【0085】
このように近赤外レーザダイオード52aからの励起光L2の射出と近赤外レーザダイオード52bからの励起光L2’の射出とを切り替えるようにした場合にも、上記第3の実施形態の光源装置7と同様に、ダイクロイックミラー56上の励起光の反射位置を変更することができるので、集光レンズ55への励起光の入射位置を変更することができ、これによりライトガイドLGの光入射端面60への励起光の光軸の入射角度を変更して励起光の被観察部への照射範囲を変更することができる。なお、図8に示す第4の実施形態の光源装置8においては、平行光源部を2つ設けるようにしたが、被観察部への励起光の照射範囲を3段階以上切り替える場合には、その照射範囲の段階数に応じて平行光源部の数を増加させ、これらを集光レンズ55の光軸方向に配列するようにすればよい。
【0086】
次に、本発明の第5の実施形態の光源装置について説明する。上記第1〜第4の実施形態の光源装置においては、近赤外レーザダイオードから射出された励起光をダイクロイックミラー56によって直角に反射することによって集光レンズ55に入射させるようにしたが、これに対し第5の実施形態の光源装置9は、図9に示すように、ダイクロイックミラー56を設けないようにし、近赤外レーザダイオード52とコリメートレンズ54とを備えた平行光源部70を、集光レンズ55の光軸に平行な直線上であって、かつ非球面レンズ51を透過した通常光L1の光路上に配置するようにしたものである。そして、さらに上記のように配置された平行光源部70を集光レンズ55の光軸に直交する方向(矢印D方向)に移動機構58によって移動するようにしたものである。
【0087】
このように移動機構58によって平行光源部70を移動させた場合にも、上記第1〜第4の実施形態の光源装置と同様に、集光レンズ55への励起光の入射位置を変更することができ、これによりライトガイドLGの光入射端面60への励起光の光軸の入射角度を変更して励起光の被観察部への照射範囲を変更することができる。
【0088】
次に、本発明の第6の実施形態の光源装置について説明する。上記第5の実施形態の光源装置9においては、平行光源部70を移動させることによって、集光レンズ55への励起光の入射位置を変更するようにしたが、これに対し第6の実施形態の光源装置11は、図10に示すように、近赤外レーザダイオード52aとコリメートレンズ54aとを備えた第1の平行光源部70aと、近赤外レーザダイオード52bとコリメートレンズ54bとを備えた第2の平行光源部70bとを集光レンズ55の光軸に直交する方向に配列し、LDドライバ53によって近赤外レーザダイオード52aからの励起光L2の射出と近赤外レーザダイオード52bからの励起光L2’の射出とを切り替えるようにしたものである。
【0089】
このように近赤外レーザダイオード52aからの励起光L2の射出と近赤外レーザダイオード52bからの励起光L2’の射出とを切り替えるようにした場合にも、上記第5の実施形態の光源装置9と同様に、集光レンズ55への励起光の入射位置を変更することができるので、これによりライトガイドLGの光入射端面60への励起光の光軸の入射角度を変更して励起光の被観察部への照射範囲を変更することができる。なお、図10に示す第6の実施形態の光源装置11においては、平行光源部を2つ設けるようにしたが、被観察部への励起光の照射範囲を3段階以上切り替える場合には、その照射範囲の段階数に応じて平行光源部の数を増加させ、これらを集光レンズ55の光軸に直交する方向に配列するようにすればよい。
【0090】
なお、上記第5および第6の実施形態の光源装置9,11のように、近赤外レーザダイオードおよびコリメートレンズを通常光L1の光路上に設けるようにしたとしても、通常光L1の光量は十分な大きさとすることができ、また回折効果や拡散効果などがあるので被観察部に問題となるような影が写り込むようなことはない。
【0091】
また、近赤外レーザダイオードによる通常光L1のケラレについても、たとえば、非球面レンズ51としてレンズ径が50mmのEdmund製精密非球面レンズを使用し、近赤外レーザダイオードとして直径が5.6mmのEdmund製レーザダイオードを使用した場合には、その伝送効率は1−(5.6/50)=99%となるので特に問題はない。
【0092】
ただし、上記第5および第6の実施形態においては、上述したように通常光L1の光路上に近赤外レーザダイオードを設けるようにしたので、通常光L1が近赤外レーザダイオードに照射されることによって近赤外レーザダイオードが発熱して故障してしまうおそれがある。
【0093】
そこで、たとえば、非球面レンズ51の可視光ランプ50側の一部の面に対し、図11に示すように、近赤外レーザダイオード52への通常光L1の照射を妨げる遮光部材51aを設けるようにしてもよい。この遮光部材51aとしては、通常光L1を反射する部材を用いるようにしてもよいし、通常光L1を吸収する部材を用いるようにしてもよい。なお、遮光部材51aとして、通常光L1を反射する部材を用いる場合には、通常光L1を反射する方向が可視光ランプ50方向以外の方向となるように構成することが望ましい。
【0094】
また、上記説明では、非球面レンズ51の可視光ランプ50側の面に遮光部材51aを設けるようにしたが、これに限らず、非球面レンズ51の近赤外レーザダイオード52側の面に設けるようにしてもよいし、もしくは非球面レンズ51とは分離して設けるようにしてもよい。
【0095】
または、近赤外レーザダイオードの可視光ランプ50側に通常光L1を反射するような反射部材を設けるようにしてもよい。この反射部材についても、通常光L1を反射する方向が可視光ランプ50方向以外の方向となるように構成することが望ましい。もしくは、反射部材の代わりに、近赤外レーザダイオードに対して断熱部材を設けるようにしてもよい。断熱部材の材料としては公知の材料を使用することができる。また、近赤外レーザダイオードに対して断熱部材と反射部材との両方を設けるようにしてもよい。
【0096】
次に、本発明の第7の実施形態の光源装置について説明する。上記第1〜第4の実施形態の光源装置においては、可視光ランプ50および非球面レンズ51を集光レンズ55の光軸方向に配置するとともに、近赤外レーザダイオード52とコリメートレンズ54とを備えた平行光源部70を上記光軸方向に直交する方向に配置するようにしたが、これに対し第7の実施形態の光源装置12は、図12に示すように、平行光源部70を集光レンズ55の光軸方向に配置するとともに、可視光ランプ50および非球面レンズ51を上記光軸方向に直交する方向に配置するようにしたものである。そして、図12に示す光源装置12におけるダイクロイックミラー59は、可視光ランプ50から射出され非球面レンズ51を透過した通常光L1を集光レンズ55に向けて反射するとともに、近赤外レーザダイオード52から射出されコリメートレンズ54を透過した励起光L2を透過するものである。
【0097】
そして、さらに第7の実施形態の光源装置12には、上記のように配置された平行光源部70を、集光レンズ55の光軸に直交する方向(矢印E方向)に移動機構58によって移動するようにしたものである。
【0098】
このように移動機構58によって平行光源部70を移動させた場合にも、上記第1〜第4の実施形態の光源装置と同様に、集光レンズ55への励起光の入射位置を変更することができ、これによりライトガイドLGの光入射端面60への励起光の光軸の入射角度を変更して励起光の被観察部への照射範囲を変更することができる。
【0099】
次に、本発明の第8の実施形態の光源装置について説明する。上記第7の実施形態の光源装置12においては、平行光源部70を移動させることによって、集光レンズ55への励起光の入射位置を変更するようにしたが、これに対し第8の実施形態の光源装置13は、図13に示すように、近赤外レーザダイオード52aとコリメートレンズ54aとを備えた第1の平行光源部70aと、近赤外レーザダイオード52bとコリメートレンズ54bとを備えた第2の平行光源部70bとを集光レンズ55の光軸に直交する方向に配列し、LDドライバ53によって近赤外レーザダイオード52aからの励起光L2の射出と近赤外レーザダイオード52bからの励起光L2’の射出とを切り替えるようにしたものである。
【0100】
このように近赤外レーザダイオード52aからの励起光L2の射出と近赤外レーザダイオード52bからの励起光L2’の射出とを切り替えるようにした場合にも、上記第7の実施形態の光源装置12と同様に、集光レンズ55への励起光の入射位置を変更することができるので、これによりライトガイドLGの光入射端面60への励起光の光軸の入射角度を変更して励起光の被観察部への照射範囲を変更することができる。なお、図13に示す第8の実施形態の光源装置13においては、平行光源部を2つ設けるようにしたが、被観察部への励起光の照射範囲を3段階以上切り替える場合には、その照射範囲の段階数に応じて平行光源部の数を増加させ、これらを集光レンズ55の光軸に直交する方向に配列するようにすればよい。
【0101】
次に、本発明の第9の実施形態の光源装置について説明する。上記第1〜8の実施形態の光源装置においては、近赤外レーザダイオードから射出された励起光を集光レンズ55によってライトガイドLGの光入射端面60に集光して入射させるようにしたが、これに対し第9の実施形態の光源装置14は、図14に示すように、集光レンズ55を設けることなく、平行光源部70から射出された励起光L3またはL4を直接ライトガイドLGの光入射端面60に入射させるようにしたものである。なお、可視光ランプ50から射出された通常光L1は集光レンズ65によって集光されてライトガイドLGの光入射端面60に入射されるものとする。
【0102】
そして、さらに第9の実施形態の光源装置14には、上記のように配置された平行光源部70の光軸がライトガイドLGの光入射端面60の垂直方向に対して複数の角度で傾くように、移動機構58によって平行光源部70を矢印F方向(ライトガイドLGの光入射端面60の中央を中心とする円の円周方向)に移動するようにしたものである。
【0103】
このように移動機構58によって平行光源部70を移動させた場合にも、上記第1〜第8の実施形態の光源装置と同様に、ライトガイドLGの光入射端面60への励起光の光軸の入射角度を変更することができ、これにより励起光の被観察部への照射範囲を変更することができる。
【0104】
次に、本発明の第10の実施形態の光源装置について説明する。上記第9の実施形態の光源装置においては、平行光源部70を移動させることによって、ライトガイドLGの光入射端面60への励起光の光軸の入射角度を変更するようにしたが、これに対し第10の実施形態の光源装置15は、図15に示すように、近赤外レーザダイオード52aとコリメートレンズ54aとを備えた第1の平行光源部70aと、近赤外レーザダイオード52bとコリメートレンズ54bとを備えた第2の平行光源部70bとを上述した矢印F方向に沿って配置し、LDドライバ53によって近赤外レーザダイオード52aからの励起光L2の射出と近赤外レーザダイオード52bからの励起光L2’の射出とを切り替えるようにしたものである。
【0105】
このように近赤外レーザダイオード52aからの励起光L2の射出と近赤外レーザダイオード52bからの励起光L2’の射出とを切り替えるようにした場合にも、上記第9の実施形態の光源装置14と同様に、ライトガイドLGの光入射端面60への励起光の光軸の入射角度を変更することができるので、これに励起光の被観察部への照射範囲を変更することができる。なお、図15に示す第10の実施形態の光源装置15においては、平行光源部を2つ設けるようにしたが、被観察部への励起光の照射範囲を3段階以上切り替える場合には、その照射範囲の段階数に応じて平行光源部の数を増加させ、これらを上述した矢印F方向に配列するようにすればよい。
【0106】
なお、上記実施形態においては、第1の撮像系により蛍光画像を撮像するようにしたが、これに限らず、被観察部に対して平行光からなるその他の特殊光を照射し、その照射による被観察部の吸光特性に基づく画像を撮像するようにしてもよい。
【0107】
また、上記実施形態は、本発明の光源装置を硬性鏡システムに適用したものであるが、これに限らず、たとえば、軟性内視鏡システムに適用してもよい。
【符号の説明】
【0108】
1 硬性鏡システム
2,6〜9,11〜15 光源装置
3 プロセッサ
4 モニタ
10 硬性鏡撮像装置
20 撮像ユニット
24 高感度撮像素子
26 撮像素子
30 体腔挿入部
30f リレーレンズ
30g マルチモード光ファイバ
50 可視光ランプ
51 非球面レンズ
51a 遮光部材
52,52a,52b 近赤外レーザダイオード
54,54a,54b コリメートレンズ
55 集光レンズ
56 ダイクロイックミラー
57 移動機構
58 移動機構
59 ダイクロイックミラー
60 光入射端面
65 集光レンズ
70 平行光源部
70a 第1の平行光源部
70b 第2の平行光源部

【特許請求の範囲】
【請求項1】
所定の導光部材の光入射端面に入射される平行光を射出する平行光源部と、
該平行光源部から射出された平行光の光軸の前記導光部材の光軸に対する入射角度を変更することによって前記導光部材の光出射端面から射出される前記平行光の照射範囲を変更する照射範囲変更部とを備えたことを特徴とする光源装置。
【請求項2】
前記平行光源部から射出された平行光を前記導光部材の光入射端面に集光する集光レンズを備え、
前記照射範囲変更部が、前記集光レンズへの前記平行光の入射位置を変更することによって前記平行光の前記導光部材の光軸に対する入射角度を変更するものであることを特徴とする請求項1記載の光源装置。
【請求項3】
前記平行光源部から射出された平行光を前記集光レンズに向けて反射する反射部材を有し、
前記照射範囲変更部が、前記反射部材を前記集光レンズの光軸方向または光軸に直交すする方向に移動させることによって前記集光レンズへの前記平行光の入射位置を変更するものであることを特徴とする請求項2記載の光源装置。
【請求項4】
前記平行光源部から射出された平行光を前記集光レンズに向けて反射する反射部材を有し、
前記照射範囲変更部が、前記平行光源部を前記集光レンズの光軸方向に移動させることによって前記集光レンズへの前記平行光の入射位置を変更するものであることを特徴とする請求項2記載の光源装置。
【請求項5】
複数の前記平行光源部を有するとともに、該複数の平行光源部から射出された平行光を前記集光レンズに向けて反射する反射部材を有し、
前記複数の平行光源部が、該各平行光源部から射出された平行光が前記反射部材上の互いに異なる位置に照射されるように配置されており、
前記照射範囲変更部が、前記各平行光源部からの平行光の射出を切り替えることによって前記集光レンズへの前記平行光の入射位置を変更するものであることを特徴とする請求項2記載の光源装置。
【請求項6】
前記平行光とは異なる波長帯域の光を射出する光源を有し、
前記反射部材が、前記光源から射出された光の光路上に配置されたものであることを特徴とする請求項3から5いずれか1項記載の光源装置。
【請求項7】
前記反射部材が、前記光源から射出された光を透過させるとともに、前記平行光を反射するダイクロイックミラーであることを特徴とする請求項6記載の光源装置。
【請求項8】
前記反射部材が、任意の波長を反射するミラー部材であることを特徴とする請求項3から6いずれか1項記載の光源装置。
【請求項9】
前記平行光源部が、前記集光レンズの光軸方向に配置されたものであり、
前記照射範囲変更部が、前記平行光源部を前記集光レンズの光軸に直交する方向に移動させることによって前記集光レンズへの前記平行光の入射位置を変更するものであることを特徴とする請求項2記載の光源装置。
【請求項10】
前記集光レンズの光軸方向に直交する方向に複数の前記平行光源部が配置されており、
前記照射範囲変更部が、前記各平行光源部からの平行光の射出を切り替えることによって前記集光レンズへの前記平行光の入射位置を変更するものであることを特徴とする請求項2記載の光源装置。
【請求項11】
前記平行光源部が、レーザダイオードまたは発光ダイオードを備えたものであることを特徴とする請求項1から10いずれか1項記載の光源装置。
【請求項12】
前記平行光源部が、前記平行光として近赤外光を射出するものであることを特徴とする請求項1から11いずれか1項記載の光源装置。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate

【図7】
image rotate

【図8】
image rotate

【図9】
image rotate

【図10】
image rotate

【図11】
image rotate

【図12】
image rotate

【図13】
image rotate

【図14】
image rotate

【図15】
image rotate

【図16】
image rotate

【図17】
image rotate


【公開番号】特開2012−231835(P2012−231835A)
【公開日】平成24年11月29日(2012.11.29)
【国際特許分類】
【出願番号】特願2011−100877(P2011−100877)
【出願日】平成23年4月28日(2011.4.28)
【出願人】(306037311)富士フイルム株式会社 (25,513)
【Fターム(参考)】