説明

波長可変半導体レーザ

【課題】構成部品数を従来よりも増やすことなく、発振波長を変化させる際のモードホッピングを解消し、従来よりも幅広い範囲で、発振波長を変化させること。
【解決手段】活性領域14と、光導波路16と、光導波路の光伝播方向に沿う側面を活性領域と対向させて光導波路と活性領域とを光結合する光結合部30と、光結合部を挟んで活性領域と対向して設けられていて光導波路を含む光偏向部20と、光導波路に対して、活性領域を挟んで配置されていて、光導波路から入射された光を波長選択された戻り光として光導波路へ帰還させる反射型回折格子18と、光導波路の、光伝播方向と直交する光出射端面22に設けられていて、反射型回折格子と相俟って光共振器を構成する反射面24とを備え、光偏向部は、光導波路から反射型回折格子に向かう光の出射角を変えることによって、反射型回折格子への入射角と光路の長さとを変更することを特徴とする。

【発明の詳細な説明】
【技術分野】
【0001】
この発明は、半導体レーザ、特に発振波長を変化することができる波長可変半導体レーザに関する。
【背景技術】
【0002】
近年、波長多重通信(WDM:Wavelength Division multiplexing)システムの発展にともない、発振波長を変更できる波長可変レーザ光源が求められるようになってきた。このようなレーザ光源としては、種々の形式のものが提案されているが、ここでは、2つの従来技術を例示する。
【0003】
まず、第1の従来技術として、分布ブラッグ反射型半導体レーザ(以下、DBRレーザとも称する)が挙げられる。
【0004】
このDBRレーザでは、発振波長を変化させていくと、発振波長が不連続に変化するモードホッピングが生じるという問題点がある。
【0005】
このモードホッピングは、レーザ光源の発振波長(縦モード波長)が、共振器の光路長により決定される離散的な値を取ることに由来しており、発振波長と現在選択されている縦モード波長との間の波長のずれが大きくなると、隣接する縦モード波長へと、発振波長が不連続に変化する現象である。
【0006】
一方、DBRレーザにおいて、モードホッピングの影響を緩和して、より広い範囲に渡って発振波長を連続的に変化させることが可能な、3電極DBRレーザが知られている。この3電極DBRレーザは、活性領域と分布ブラッグ反射鏡領域との間に、伝播光の位相を調整する位相調整領域を設けた構造となっている。
【0007】
この3電極DBRレーザにおいては、位相調整領域に印加する電流を、分布ブラッグ反射鏡領域に印加する電流と同時に制御する。この結果、モードホッピング時における発振波長の不連続変化をある程度抑制することができる。これにより、3電極DBRレーザは、約10nmの範囲に渡って発振波長を変化させることができる(たとえば、特許文献1参照)。
【0008】
また、第2の従来技術として、レーザ光源、光偏向器、レンズおよび反射型回折格子を、光の伝播方向に沿って、この順序で直列に配置した外部共振器型波長可変レーザ光源が挙げられる。
【0009】
より詳細には、第2の従来技術は、レーザ光源、およびレーザ光源で発生した光の伝播方向を変える光偏向器が、モノリシックに接続されている。
【0010】
レーザ光源から発生した光は、光偏向器により出射角を調整された上で、レーザ光源の外部に設けられたレンズに向かって出射される。レンズを通過する光は、屈折されて、所定の入射角で反射型回折格子へ入射する。この際、光の出射角に応じて、レーザ光源から反射型回折格子に至るまでの光の伝播経路(共振器長)が変化する。
【0011】
反射型回折格子に入射した光のうち、入射角と等しい回折角で反射されることで単色化された戻り光は、入射の際と逆の経路(反射型回折格子→レンズ)を通過してレーザ光源へと帰還する。
【0012】
この第2の従来技術では、光偏向器により光の出射角を変更することで、光を単色化すると同時に、光の伝播経路の長さ(共振器長)をも変化させている。これにより、モードホッピングを生じることなく光の発振波長を変化させる(たとえば、非特許文献1参照)。
【特許文献1】特開2004−273644号公報(図3)
【非特許文献1】Oh Kee Kwon et al."Proposal of Electrically Tunable External−Cavity Laser Diode",IEEE PHOTONICS TECHNOLOGY LETTERS,VOL.16,NO.8,AUGUST 2004,pp.1804−1806
【発明の開示】
【発明が解決しようとする課題】
【0013】
上述した第1の従来技術は、発振波長の変化範囲が、約10nmであり、決して満足できる広さとはいえなかった。
【0014】
また、上述した第2の従来技術は、モードホッピングの問題を解決している。しかし、モードホッピングを生じることなく発振波長を変化するためには、レーザ光源と反射型回折格子との間にレンズを配置しなければならなかった。そのため、波長可変レーザ光源を構成する部品数が増加するという問題点があった。
【0015】
この発明は、このような問題点に鑑みなされたものである。したがって、この発明は、(1)構成部品数を従来よりも増やすことなく、(2)発振波長を変化させる際のモードホッピングを解消し、(3)従来よりも幅広い範囲で、発振波長を変化させることができる波長可変半導体レーザを提供することを目的とする。
【課題を解決するための手段】
【0016】
この発明は、上述の目的を達成するために、次のように構成されている。
【0017】
すなわち、請求項1に記載の波長可変半導体レーザは、活性領域と、光導波路と、光結合部と、光偏向部と、反射型回折格子と、反射面とを備えている。
【0018】
光結合部は、光導波路と活性領域との間で光結合を行っている。光導波路は、これを光が伝播する光伝播方向に沿った側面を活性領域の入出射面と対向させて配置されている。
【0019】
光偏向部は、光結合部を挟んで活性領域に対向して設けられていて、光導波路の全部または一部分を含む。
【0020】
反射型回折格子は、光導波路に対して、活性領域を挟んで、設けられていて、光導波路から入射された光を、波長選択された戻り光として、光導波路へ帰還させる。
【0021】
反射面は、光導波路の光伝播方向と直交する光出射端面に設けられている。この反射面は、上述の反射型回折格子と相俟って光共振器を構成している。
【0022】
上述した光偏向部は、光導波路から出射する光の出射角を変えることによって、光導波路から反射型回折格子に向かう光の、反射型回折格子への入射角と光路の長さを変更する。
【0023】
このように、この発明の波長可変半導体レーザによれば、活性領域で発生した光は、反射面と反射型回折格子とで構成される光共振器において、共振されて所定波長の光として光出射端面から取り出される。この光共振器においては、光偏向部によって、光導波路から反射型回折格子に向けた光の出射方向を変えることにより、反射型回折格子へ入射する光の入射角および光路長(共振器長)を同時に変更する。このように、反射型回折格子への入射角の変更に伴い生じる波長選択と、共振器長の変化とを同時に行うことにより、レンズを設けることなくモードホッピングを解消して幅広い範囲で発振波長を変更することができる。
【0024】
また、請求項2に記載の波長可変半導体レーザによれば、反射型回折格子は、活性領域と別部品とされている。
【0025】
このように、この発明によれば、反射型回折格子を活性領域とは別体とすることにより、微細な加工が要求される反射型回折格子を活性領域とは別に製造することができる。
【0026】
また、請求項3に記載の波長可変半導体レーザによれば、反射型回折格子は、活性領域において、光導波路から活性領域へと入射された光が照射される端面に形成されている。
【0027】
このように、この発明によれば、反射型回折格子を活性領域の端面に設けたので、波長可変半導体レーザを構成する部品数を削減することができる。
【0028】
また、請求項4に記載の波長可変半導体レーザによれば、光偏向部は、電気光学的に光導波路の屈折率を変えることによって、反射型回折格子に向かう光の、反射型回折格子への入射角を変更する手段である。
【0029】
このように、この発明によれば、光偏向部を用いて、活性領域と光結合した光導波路の屈折率を、電気光学効果を利用して変更することができるので、光導波路と活性領域との光結合部から出射する光の出射角、したがって反射型回折格子に向かう光の、反射型回折格子への入射角を、光偏向部に印加する電圧の調整により、簡単に調整することができる。
【0030】
また、請求項5に記載の波長可変半導体レーザによれば、、反射型回折格子の格子面を、平面状に形成し、この反射型回折格子を、光導波路の光伝播方向と格子面の法線とが45°の角度をなすように配置している。
【0031】
詳しくは、後述するが、このような角度をなすように格子面が平面の反射型回折格子を配置することにより、光導波路と反射型回折格子との間に介在する活性領域中の光路に沿った長さによらず、モードホッピングを解消することができる。つまり、この配置条件の下では、光路に沿った活性領域の長さを、設計に応じて任意の長さとすることができる。
【0032】
また、請求項6に記載の波長可変半導体レーザによれば、光導波路に、さらに光路の光路長を変化させるための位相調整領域が設けられている。
【0033】
このように、この発明によれば、光導波路に位相調整領域が設けられているので、光路の光路長を変化させることができる。よって、初期位相を微調整することで、所望の発振波長においてレーザ発振を容易に達成できる。
【0034】
また、請求項7に記載の波長可変半導体レーザによれば、反射型回折格子が、光導波路の光伝播方向と格子面の法線とが、0°より大きくかつ90°より小さい角度をなすように配置されたブレーズド格子であって、光偏向部が入射角を変更しない状態における光導波路から反射型回折格子に向かう光の光伝播方向を初期方向とするときに、ブレーズド格子が、互いに交差する、初期方向に平行な第1面および初期方向に垂直な第2面からなる格子溝を備えており、さらに、第1面の初期方向に沿った長さを、活性領域で発生する光の、活性領域内における中心波長の自然数倍にしてある。
【0035】
このように、第1面の初期方向に沿った長さを、活性領域で発生する光の、活性領域内における中心波長の自然数倍とすることで、理由は明らかでないが、波長可変半導体レーザから出射される光の強度分布を滑らかにすることができる。
【0036】
また、請求項8に記載の波長可変半導体レーザによれば、活性領域と、光導波路と、活性領域の光伝播方向に沿う側面を光導波路と対向させて光導波路と前記活性領域とを光結合する光結合部と、光結合部を挟んで活性領域と対向して設けられていて光導波路を含む光偏向部と、活性領域に対して、光導波路を挟んで設けられていて、活性領域から入射された光を波長選択された戻り光として活性領域へ帰還させる反射型回折格子と、活性領域の、光伝播方向と直交する光出射端面に設けられていて、反射型回折格子と相俟って光共振器を構成する反射面とを備え、光偏向部は、活性領域から反射型回折格子に向かう光の伝播方向を変えることによって、反射型回折格子への入射角と光路の長さとを変更することを特徴とする。
【0037】
このように、この発明は、請求項1に記載の発明において、活性領域と光導波路とを入れ替えた構成となっている。つまり、活性領域で発生した光は、反射面と反射型回折格子との間の光路として構成される光共振器で共振されることで、所定波長の光として光出射端面から取り出される。この光共振器においては、光偏向部が、活性領域から反射型回折格子に向けた光の出射方向を変えることにより、反射型回折格子へ入射する光の入射角、および光路の長さ(共振器長)を同時に変更する。このように、反射型回折格子への入射角の変更に伴い生じる波長選択と、共振器長の変化とを同時に行うことにより、レンズを設けることなくモードホッピングを解消して幅広い範囲で発振波長を変更することができる。
【0038】
また、請求項9に記載の波長可変半導体レーザによれば、光出射端面側の端部付近に活性領域を備えた第1光導波路と、第2光導波路と、第1光導波路の光伝播方向に沿う側面を第2光導波路と対向させて第1および第2光導波路を光結合する光結合部と、光結合部を挟んで第2光導波路と対向して設けられていて第1光導波路を含む光偏向部と、第1光導波路に対して、第2光導波路を挟んで設けられていて、第1光導波路から入射された光を波長選択された戻り光として第1光導波路へ帰還させる反射型回折格子と、活性領域の、光伝播方向と直交する光出射端面に設けられていて、反射型回折格子と相俟って光共振器を構成する反射面とを備え、光偏向部は、第1光導波路から反射型回折格子に向かう光の出射角を変えることによって、反射型回折格子への入射角と光路の長さとを変更することを特徴とする。
【0039】
このように、この発明によれば、活性領域で発生した光は、反射面と反射型回折格子との間の光路として構成される光共振器で共振されることで、所定波長の光として光出射端面から取り出される。この光共振器においては、光偏向部が、活性領域から反射型回折格子に向けた光の出射方向を変えることにより、反射型回折格子へ入射する光の入射角、および光路の長さ(共振器長)を同時に変更する。このように、反射型回折格子への入射角の変更に伴い生じる波長選択と、共振器長の変化とを同時に行うことにより、レンズを設けることなくモードホッピングを解消して幅広い範囲で発振波長を変更することができる。
【発明の効果】
【0040】
このように、この発明の波長可変半導体レーザの構成によれば、活性領域、反射面を備えた光導波路、光結合部、光偏向部、および反射型回折格子を備えており、光偏向部の作用により、光導波路から反射型回折格子に向かう光の、反射型回折格子への入射角と光路長とを変更するとともに、反射型回折格子で波長選択された戻り光を光導波路へ帰還させている。
【0041】
その結果、この発明の波長可変半導体レーザは、レンズを使用しないことから、構成部品数を従来よりも増やすことがない。また、この発明の波長可変半導体レーザは、発振波長を変化させる際のモードホッピングを解消し、従来よりも幅広い範囲で、発振波長を変化させることができる。
【発明を実施するための最良の形態】
【0042】
つぎに、図1〜図12を参照して、この発明の実施の形態について説明する。尚、各図は、各構成要素の形状、大きさ及び配置関係については、この発明が理解できる程度に概略的に示したものに過ぎない。また、以下、この発明の好適な構成例について説明するが、各構成要素の材質及び数値的条件などは、単なる好適例に過ぎない。従って、この発明は、以下の実施の形態に何ら限定されない。
【0043】
(実施の形態1)
図1〜図8を参照して、実施の形態1の波長可変半導体レーザの構造および動作について説明する。図1は、波長可変半導体レーザの概略構造を示す斜視図である。図2は、図1のI−I線に沿った要部拡大断面図である。図3は、波長可変半導体レーザの構造上の条件および動作の説明に供する模式図である。図4は、波長可変半導体レーザの反射型回折格子付近を模式的に示した要部拡大模式図である。図5は、波長可変半導体レーザについて行ったシミュレーション結果を示す図である。図6は、光出射端面から出射される光の強度分布を模式的に示す図である。図7は、反射型回折格子の配置角度変化の説明に供する模式図である。図8は、波長可変半導体レーザの変形例を示す平面図である。
【0044】
図1に示す構成例につき説明する。波長可変半導体レーザ10は、平面形状が矩形の平行平面板状の基板12を共通に用いてそれぞれ形成された活性領域14、光導波路16、光偏向部20、光結合部30および反射型回折格子18を備えている。この波長可変半導体レーザ10は、全ての構成部品が共通の基板12に集積されたモノリシック波長可変半導体レーザである。
【0045】
基板12の平面形状を長方形とする。光導波路16は、基板12の長手方向に対向する一方の端面側に設けられている。また、反射型回折格子18は、基板12の他方の端面側に設けられている。このとき格子面28は、光導波路16側にある。
【0046】
活性領域14は、誘導放出により光を発生する領域である。また、この活性領域14は、反射型回折格子18と、光導波路16との間に介在させて設けられている。この活性領域14は、基板12と、基板12の一方の主面(上面)12aに設けられた活性層32(図2参照)と、活性層32上に設けられたp型クラッド層34(図2参照)、このp型クラッド層34上、および、基板12の他方の主面(下面)12bにそれぞれ設けられた電極36および38(図2参照)とを備えている。活性領域14には、光導波路16と反射型回折格子18との間の活性層32中に光の伝播経路として機能する領域が形成されている。
【0047】
活性領域14は、反射型回折格子18側から光導波路16側へと向かう方向(基板12の長手方向)に沿って、横幅(基板12の短手方向に沿う長さ)が徐々に狭くなっていく。つまり、活性領域14は、平面視で、反射型回折格子18側から光導波路16側へと向かうに従って、ほぼテーパ状に横幅が縮小していく形態に形成されている。従って、活性領域14は、全体的に、後述する反射型回折格子18と同厚の、三角形状のブロックの形態をしていて、その斜辺を挟む一方の辺の側面が、格子面28と対面し、かつ、他方の辺の側面14cが、光導波路16と対向して設けられている。この活性領域14の光導波路16との対向面、および反射型回折格子18との対向面は、それぞれ平面であって、光の入射および出射を行う面を構成している。
【0048】
反射型回折格子18は、等厚の直角三角形のブロック形態に形成されていて、斜辺のブロック面に格子面28が作りこまれた構成となっている。なお、反射型回折格子18は、活性領域14とは別部品とされている。この反射型回折格子18の格子面28は、基板12の上面12aと直交していて、各格子溝50は、上面12aと垂直な方向に一定の間隔で離間して設けられている。
【0049】
反射型回折格子18は、直交する2辺における側面を基板12の直交する2つの側面と平行にして配置されている。
【0050】
光導波路16は、ストライプ状に形成されたチャネル型導波路であり、基板12上に設けられた光導波層43(図2参照)と、光導波層43の上に設けられたp型層42(図2参照)とを備える。光導波路16は、基板12の上面12a上に基板12の長手方向に沿う側面と平行に設けられている。光導波路16の長手方向の一端16bから他端16aの近傍に至るまで、光導波路16の側面16cは、これと対向する活性領域14の側面、すなわち入出射面14cと近接して対向している。また、光導波路16の一端16b側の端面は、間隙を隔てて活性領域14と対向している。光導波路16の他端16a側の端面は、波長可変半導体レーザ10の光の光出射端面22となっている。
【0051】
光結合部30は、光導波路16と活性領域14とを光結合する構成部分である。すなわち、光結合部30は、光導波路16の光伝播方向と平行な側面16cと、この側面16cと離間して対向する、活性領域14の側面14cと、両側面16cおよび14cの間に設けられた絶縁層48(図2参照)とを備える。光導波路16の側面16cは、光導波路16中で伝播方向が偏向された光を出射し、かつ、反射型回折格子18からの反射光、すなわち戻り光が入射する面を構成している。光結合部30は、光導波路16の光伝播方向に沿って、他端16aから所定の長さW4にわたって設けられている。この長さW4は、好ましくは、光導波路16の全長と等しいか、全長よりも短いことが好ましい。
【0052】
光結合部30において、光は、実質的に100%の光結合効率で結合されているとみなせる。すなわち、光導波路16から活性領域14へと光が結合する際、および活性領域14から光導波路16へと光が結合する際には、光の強度の減少が実質的にないとみなせる。
【0053】
光導波路16において、光結合部30に至った光は、側面16cからエバネッセント波として絶縁層48へ染み出し、側面14cを経て活性領域14の活性層32へと入射される。ところで、光結合部30では、長さW4の全長に渡って光が結合されるので、活性領域14に向けて出射される光は、長さW4に対応する幅を有する。より詳細には、光導波路16から活性領域14へと出射する光の出射角をΘ(図3参照)としたときに、活性領域14に向けて出射される光は、図面内において、活性領域14中での光の伝播方向に直交する方向に、W4sinΘの幅を有する。一方、活性領域14から出射して光結合部30に至った光は、同様に、光結合部30を経て光導波路16へと入射する。
【0054】
絶縁層48の幅(短手方向の長さ)は、光が結合可能な程度の幅とする。この幅は、活性領域14と光導波路16との間の光結合効率に関係している。より詳細には、絶縁層48の幅が広い場合には、活性領域14と光導波路16との間で、100%の光結合効率を達成するためには、光結合部30の長さを長くする必要がある。逆に、絶縁層48の幅が狭い場合には、活性領域14と光導波路16との間で、100%の光結合効率を達成するためには、光結合部30の長さは短くともよい。ここで、光結合効率とは、光結合部30を介して、光導波路16(活性領域14)から活性領域14(光導波路16)に移行した光の強度割合のことをいう。
【0055】
このように、光は、活性領域14と光導波路16との間を、光結合部30を介して、容易に伝播することができる。
【0056】
光導波路16の、光結合部30に対応する領域は、光偏向部20を構成している。光偏向部20は、光導波層43、光導波層43の上に設けられたp型層42(図2参照)、p型層の上に設けられた電極26(図2参照)、および基板12の他方の主面(下面)12bに設けられた電極38(図2参照)を備えている。これらの電極26と38との間に印加する電圧を変化させることによって、電気光学効果に基づき、光偏向部20に含まれる光導波層43の領域の屈折率を制御する。
【0057】
以下、この屈折率制御につき具体的に説明する。
【0058】
今、電極26と38との間に所定の電圧V(V=0の場合も含む)が印加されているとする。そのときの、光導波層43の屈折率をneとし、活性領域14の屈折率をnactとしたときに、光結合部30を介して、光導波路16から活性領域14へと出射する光の出射角Θが、Θxであるとする。このとき、出射角Θxと屈折率neおよびnactとの間には、cosΘx=ne/nactの関係が成り立つことが知られている。このことより、電極26に印加する電圧を制御して、光偏向部20に対応する光導波層43の屈折率neを変化させてne'とすると、nactは一定であるから、出射角Θxが、Θx'に変化する。従って、光は、出射角がΘx'に揃った状態、つまり、コリメートされた状態で、光結合部30から活性領域14へと出射される。このように、出射角Θが変えられることにより、光の反射型回折格子18への入射角α(図3参照)も変わる。
【0059】
光導波路16の端面16aを構成する光出射端面22は、所定の反射率(<100%)を有する反射膜が形成された反射面24とされている。
【0060】
反射型回折格子18は、基板12に活性領域14を挟んで光偏向部20と離間させて配置されている。この反射型回折格子18は、反射型平面回折格子である。反射型回折格子18の配置角度Θg(図3参照)、すなわち格子間の格子溝50が形成された格子面28の延在方向、すなわち直角三角形の斜辺と、光導波路16における光伝播方向とがなす角度は、45°である。また、反射型回折格子18は、格子溝50の断面形状が鋸歯状とされたブレーズド格子であり、格子溝50が、格子面28に図面鉛直方向に延在するように形成されている。
【0061】
図4を参照すると、反射型回折格子18において、任意の1個の格子溝50は、互いに直角に交差する第1面52および第2面54から構成されている。
【0062】
ここで、光偏向部20が、出射角Θ(入射角α)を変更しない状態、すなわち、光偏向部20において光導波層43の屈折率neが変更されていない状態において、光導波路16から反射型回折格子18に向かう光I0の光伝播方向を初期方向とし、初期方向と光導波路16の光伝播方向とのなす角度の鋭角側をΘ0とする。
【0063】
このとき、基板12の上面12aと平行な面内において、第1面52の延在方向が、初期方向と平行となるように、かつ、第2面54の延在方向が、初期方向に垂直となるように、格子溝50が形成されている。また、第1面52の初期方向に沿った長さSは、活性領域14で発生する光の、活性領域14内における中心波長と等しくされている。ここで、反射型回折格子18の格子定数をdとしたときに、dとSとの間には、d=S/sin(Θg−Θ0)という関係が成り立つ。
【0064】
ここで、「活性領域14内における中心波長」とは、活性領域14で発生する光の発光スペクトルにおけるピーク波長であって、活性領域14中での波長を示す。このピーク波長は、活性領域14のバンドギャップにより定まる。なお、以降の説明において、「活性領域14で発生する光の、活性領域14内における中心波長」を単に「中心波長」と称する。
【0065】
また、反射型回折格子18は、基板12とは別部品として形成され、基板12の上面12aに貼り付けられている。したがって、格子面28と、これと対向している活性領域14の端面14aとの間には、数μm程度の間隙46が存在する。この間隙46に対応する基板12の上面12aには無反射コーティングが施されている。これは、端面14aから出射されて反射型回折格子18に向かう光、および反射型回折格子18で波長選択を受け反射されて端面14aに向かう光(反射光あるいは戻り光とも称する)が、上面12aで乱反射されることで生じる強度減少を防ぐためである。この間隙46には、設計に応じた任意好適な光学樹脂が充填されている。
【0066】
以上説明したように、この波長可変半導体レーザ10において、活性領域14で発生した光は、反射型回折格子18と光導波路16の反射面24との間の光路を多数回往復することで、所定波長の光として光出射端面22から出射される。つまり、反射型回折格子18と光導波路16の反射面24との間の光路により光共振器が構成されている。
【0067】
つぎに、図1および図2を参照して、この波長可変半導体レーザ10の寸法、材質および積層構造の詳細について述べる。
【0068】
基板12は、たとえば、厚さが約300μmのn型InP基板を用いる。基板12の、光導波路16の光伝播方向に沿った寸法は、たとえば、約600μmとし、および光導波路16の光伝播方向に直交する方向に沿った寸法は、たとえば、約50μmとする。
【0069】
この基板12の長手方向の一端側には、反射型回折格子18が設けられている。反射型回折格子18は、基板12とは別体であり、基板12に公知の方法で貼り付けられている。反射型回折格子18は、たとえば、厚さが約2.4μmのSi基板を、フォトリソグラフィーやエッチング等の公知の方法で加工することにより形成されている。反射型回折格子18の第1面52の初期方向に沿った長さSは、上述のように、中心波長と等しくされている。ここでは、長さSはたとえば、約0.4μmとする。
【0070】
光導波路16は、光伝播方向に沿った長さが、たとえば、約320μmとされ、図面内において光伝播方向に直交する方向の長さ(幅)が、たとえば、約2μmとされている。そして、光結合部30の長さは、たとえば、約300μmとする。換言すれば、光結合部30において、活性領域14と光導波路16とは、絶縁層48を介して約300μmの長さに渡って対向している。また、光結合部30における絶縁層48の幅、すなわち側面14cと16cとの間の間隔は、たとえば、約1μmとする。絶縁層48の幅(約1μm)、および光結合部30の長さ(約300μm)が、上述の条件を満たすときに、光導波路16と活性領域14との間で、実質的に100%の光結合効率が達成される。
【0071】
また、光導波路16の反射面24は、たとえば、屈折率が異なるSiO2膜とSiN膜とを交互に積層した、いわゆる誘電体多層膜とする。
【0072】
活性領域14の長さW1は、たとえば、約230μmとする。同様に、活性領域14の長さW2は、たとえば、約580μmとする。また、活性領域14の長さW3は、たとえば、約10μmとする。
【0073】
図2に、活性領域14、光導波路16および絶縁層48の断面構造を模式的に示す。
【0074】
活性領域14は、ダブルへテロ構造からなる。すなわち、活性領域14は、n型クラッド層としての基板12と、この基板12上に形成されたInGaAsPからなる活性層32と、この活性層32上に形成されたp型InPからなるp型クラッド層34とを備えている。そして、p型クラッド層34上には、Ti膜、Pt膜およびAu膜を、この順序でp型クラッド層34上に積層した後にアニールを行うことで形成された電極36が設けられている。また、基板12の主面12bには、電極36と同じ積層構造を有する電極38が設けられている。なお、電極38は、後述する光導波路16において、基板12の主面12bに設けられる電極を兼ねており、共通電極とされている。そして、電極36と38との間には、順方向電圧が印加され、これにより活性層32が発光する。なお、活性層32で発生する光の中心波長は、約1.55μmである。
【0075】
ここで、活性層32の膜厚は、たとえば、約0.4μmとする。また、p型クラッド層34の膜厚は、たとえば、約2μmとする。また、電極36,38の厚さは、たとえば、約0.5μmとする。
【0076】
光導波路16は、pin構造を構成する。すなわち、pin構造は、n型層としての基板12と、この基板12上に形成されたInGaAsPからなる真性な光導波層43と、この光導波層43上に形成されたp型InPからなるp型層42とを備えている。光導波層43においては、光を閉じ込めて導波するInGaAsPの組成を、活性層32とは異ならせている。これにより、光導波層43のバンドギャップを活性層32よりも大きくし、活性層32で発生した光が、光導波層43で吸収されないようにしている。より具体的には、光導波層43において、InGaAsPのGaAs成分の組成を増すことでバンドギャップを大きくしている。なお、光導波層43の膜厚は、活性層32と等しく、たとえば、約0.4μmとする。また、p型層42の膜厚は、p型クラッド層34と等しく、たとえば、約2μmとする。
【0077】
また、光偏向部20は、pin構造の上面に、電極26を備えている。この電極26は、活性領域14に設けられた電極36,38と、構造および膜厚が等しい。また、基板12の他方の主面(下面)12bには、上述した共通電極としての電極38が設けられている。電極26と38との間には、活性領域14の場合とは異なり逆方向電圧が印加される。
【0078】
また、絶縁層48は、Feをドープすることにより絶縁性とされたInPからなり、その厚さは、約2.4μmである。絶縁層48は、基板12上に側面14cおよび16cに接して配置されている。
【0079】
このように、活性領域14の電極36,38には順方向電圧を、および光偏向部20の電極26,38には逆方向電圧を、それぞれ印加する。絶縁層48によって、活性領域14と光偏向部20とは電気的に絶縁されているので、電極36と電極26との間でリークが生じることはない。
【0080】
なお、「活性領域14が光を発生する」との表現、およびこれに類する表現は、「活性層32が光を発生する」との意味を表すものとする。
【0081】
つぎに、図1および図3を参照して、この波長可変半導体レーザ10の動作、すなわち、モードホッピングを生じない発振波長変化につき、説明する。
【0082】
電極36,38に順方向電流を印加すると、活性領域14において誘導放出により光が生じる。活性領域14で生じた光の一部は、光結合部30を介して、光導波路16を光出射端面22方向に伝播する。そして、反射面24に至り、反射面24において所定の反射率で反射される。反射面24で反射された光は、光導波路16を光偏向部20(光結合部30)方向に伝播する。
【0083】
光偏向部20には、電極26,38が設けられており、所定の電圧が印加される。その結果、光偏向部20における光導波層43は、屈折率がneに制御される。よって、光偏向部20に含まれる光導波層43を伝播している光は、上述のように、光導波路16の側面16cからcosΘ=ne/nactで与えられる出射角Θで、光結合部30から活性領域14へと出射される。
【0084】
活性領域14に入射された光は、経路Aに沿って、反射型回折格子18に入射角αで入射する。回折格子18に入射した光は、波長の長短により異なる回折角で反射される。つまり、回折格子18で反射されることで、光は、波長により分離される。
【0085】
反射型回折格子18に入射した光のうち、回折角α(=入射角α)で反射されることで、特定波長λに選択された戻り光のみが、再び経路Aに沿って、光導波路16へと帰還して反射面24方向に伝播する。
【0086】
このようにして、波長λの光は、光導波路16および経路Aからなる光路を複数回往復する。波長λの光は、活性領域14を経路Aに沿って伝播するたびに、誘導放出により増幅され、やがて光出射端面22から波長λの光として出射する。
【0087】
このとき光の発振波長λは、光導波路16および経路Aからなる光路の光路長、つまり、光導波路16と経路Aの光路長の和(以下、共振器長Tとも称する)で決まる縦モード波長と、反射型回折格子18の回折角αで選択される波長(以下、選択波長とも称する)との関係で決定される。
【0088】
背景技術の欄でも述べたように、縦モード波長は離散値である。一方、選択波長は、回折角αを変化させることにより、連続的に変化する値である。よって、実際の発振波長λは、回折角αにより選択された選択波長に最も近い縦モード波長となる。つまり、共振器長Tが一定の場合には、選択波長を連続的に変化させていっても、発振波長λが連続的に変化することはない。発振波長λは、隣接する縦モード波長へと不連続に移行するだけである。この波長の不連続な移行が、モードホッピングである。
【0089】
モードホッピングが生じないようにして、発振波長λを連続的に変化させるためには、選択波長を変化させると同時に、選択波長の波長変化分に応じて、共振器長Tをも変化させるのがよい。つまり、共振器長Tを変化させることで、縦モード次数を一定に保ったままで、その次数における縦モード波長自体を変化させるわけである。
【0090】
この実施の形態の波長可変半導体レーザ10も、選択波長および共振器長Tを同時に変化させるものである。つまり、回折角αが大きくなる(出射角Θを大きくする)と、選択波長が長くなる。それと同時に経路A、すなわち共振器長Tも長くなるので、縦モードの次数が変化することなく、縦モード波長が長くなる。
【0091】
回折角αを小さくする(出射角Θを小さくする)場合も同様である。これにより、選択波長が短くなり、選択波長の短波長化に応じて、共振器長Tも短くなる(経路Aが短くなる)。よって、一定の縦モード次数を保ったまま、縦モード波長が短くなる。
【0092】
このようにして、波長可変半導体レーザ10は、モードホッピングを生じることなく、連続的に発振波長λを変化させることができる。
【0093】
つづいて、主に図3を参照して、波長可変半導体レーザ10の構造上の条件について説明する。図3は、図1の要部を寸法および角度とともに示した模式図である。
【0094】
まず、図3に用いられる各符号の説明を行う。
【0095】
光導波路16の一端16bと、反射型回折格子18の格子溝が形成された格子面28とは距離Lgだけ離間している。つまり、光導波路16の光伝播方向に沿って測った光導波路16の一端16bと、反射型回折格子18の格子面28との距離はLgである。
【0096】
反射型回折素子18の配置角度、すなわち、格子溝50が形成された格子面28の延在方向と、光導波路16の光伝播方向とのなす角度は、Θgである。
【0097】
光偏向部20から、反射型回折格子18に向けて出射される光Iの出射角は、Θである。ここで、出射角Θとは、光導波路16の光伝播方向と、光Iの伝播方向とのなす角度の鋭角側を示す。
【0098】
光Iが、反射型回折格子18の点Pに到達するまでに伝播する距離をLとする。つまり、活性領域14における経路Aの幾何的長さをLとする。
【0099】
また、光Iが、反射型回折格子18の点Pに入射するときの入射角をαとする。ここで、入射角αは、反射型回折格子18の法線、すなわち格子面28の法線と光Iの伝播方向とのなす角をいう。
【0100】
また、光Iが点Pにおいて、経路Aの方向に反射回折されるときの回折角をαとする。ここで、回折角αは、反射型回折格子18の法線、すなわち格子面28の法線と、点Pにおいて、経路Aの方向に反射回折された光伝播方向とのなす角をいう。つまり、入射角と回折角とは互いに等しくαである。
【0101】
また、反射型回折格子18の格子定数をdとする。
【0102】
また、活性化領域14の屈折率をnactとする。さらに、光導波路16の光伝播方向に沿った長さをLe、屈折率をneとする。
【0103】
このような構造を有する、波長可変半導体レーザ10において、光の入射点Pにおいて回折角αで回折される光の波長λとすると、リトロー配置における回折条件より、下記(1)式が成り立つ。
【0104】
mλ/nact=2dsinα ・・・(1)
(ただし、mは正の整数である。)
(1)式より、微小なλの変化Δλによる、回折角αの変化Δαは、下記(2)式で与えられる。
【0105】
mΔλ/nact=Δα2dcosα ・・・(2)
(2)式を(1)式の両辺で割ると、下記(3)式が得られる。
【0106】
Δλ/λ=Δα/tanα ・・・(3)
ところで、幾何学的に、出射角Θと回折角αとの間には、下記(4)式が成り立つ。
【0107】
α=π/2−Θg+Θ ・・・(4)
(4)式より、微小なαの変化Δαと、出射角Θの変化ΔΘとの関係は、下記(5)式で与えられる。
【0108】
Δα=ΔΘ ・・・(5)
また、(4)式より、下記(6)式および(7)式が成り立つ。
【0109】
sinα=cos(Θ−Θg) ・・・(6)
cosα=−sin(Θ−Θg) ・・・(7)
(5)式〜(7)式を(3)式に代入して、下記(8)式が得られる。
【0110】
Δλ/λ=−tan(Θ−Θg)ΔΘ
=tan(Θg−Θ)ΔΘ ・・・(8)
一方、経路Aの長さLは、幾何的に、下記(9)式で表される。
【0111】
L=Lg/(cosΘ−sinΘ/tanΘg) ・・・(9)
(9)式において、長さLの微小な変化ΔLによる出射角Θの変化ΔΘは、下記(10)式で与えられる。
【0112】
ΔL=Lg(sinΘ+cosΘ/tanΘg)/(cosΘ−sinΘ/tanΘg2×ΔΘ
=L(sinΘ+cosΘ/tanΘg)/(cosΘ−sinΘ/tanΘg)×ΔΘ
=Lcos(−Θg+Θ)/sin(Θg−Θ)×ΔΘ
=L/tan(Θg−Θ)×ΔΘ ・・・(10)
ところで、反射面24と反射型回折格子18の点Pとの間で構成される光共振器における共振条件は、光共振器の共振器長Tを用いて、下記(11)式で与えられる。
【0113】
kT=qπ ・・・(11)
(ただし、kは、波長λの光の波数(=2π/λ)を示し、qは、正の整数(縦モード次数+1)を示す)
ここで、共振器長Tは、T=nactL+neeで与えられるので、(11)式より、下記(12)式が得られる。
【0114】
k(nactL+nee)=qπ ・・・(12)
ここで、出射角Θを変化させると、回折角αが変化することにより(12)式において、波数kが、微小変化量Δkだけ、変化するする。この微小変化Δkに対して、共振条件である(12)式は、下記(13)式のように変形できる。
【0115】
Δk(L+nee)+k(nactΔL+Δnee)=Δqπ ・・・(13)
(ただし、ΔLは、Lの微小変化を、Δneは、neの微小変化を、Δqは、qの変化を、それぞれ表す)
ここで、波数k(波長λ)が変化してもモードホッピングが生じないためには、(13)式で、Δq=0でなければならない。これより、下記(14)式が得られる。
【0116】
Δk(nactL+nee)+k(ΔL+Δnee)=0 ・・・(14)
ところで、(14)式の左辺を展開して、(12)式を用いて整理すると、下記(15)式が得られる。
【0117】
Δkqπ/k2+ΔL+Δnee=0 ・・・(15)
さらに、(15)式に、k=2π/λの両辺を微分して得られる関係であるΔk=−k2/2π×Δλを代入すると、下記(16)式が得られる。
【0118】
−Δλq/2+ΔL+Δnee=0 ・・・(16)
(16)式に、(8)式および(10)式を代入してまとめると、下記(17)式が得られる。
ΔΘ(−qλtan(Θg−Θ)/2+L/tan(Θg−Θ))+Δnee=0 ・・・(17)
(17)式を変形することで、下記(18)式が得られる。
【0119】
(L+nee)tan(Θg−Θ)−L/tan(Θg−Θ)=Δnee/ΔΘ ・・・(18)
ところで、発明者が行ったシミュレーションによれば、(18)式において、Θが小さい場合(約10°以下)に、屈折率変化ΔneとΔΘとが、近似的に比例関係にあると置けることが明らかとなった。このことより、右辺はある定数となる。上述のシミュレーションによれば、この定数は、波長λの50倍程度の値である。
【0120】
よって、(18)式を満たすように、L、Le、Θg、Θおよびneを決定することにより、モードホッピングが生じないようにしつつ、発振波長λを連続的に変化させることができる。
【0121】
さらに、(18)式が、経路Aの長さL、つまり活性領域14の長さに依存しないようにするためには、(18)式から、Lを含む項が消去できればよい。つまり、下記(19)式が成り立てばよい。
【0122】
Ltan(Θg−Θ)=L/tan(Θg−Θ) ・・・(19)
(19)式の条件は、Θg−Θ=π/4で成り立つ。Θが充分に小さい場合(約5°以下)には、近似的にΘg≒π/4(45°)と置くことができる。よって、反射型回折格子18の格子面28の延びる方向と、光導波路16の光伝播方向とのなす角度がπ/4となるように、すなわち、格子面28の法線と光導波路16の光伝播方向とのなす角度がπ/4となるように、反射型回折格子18を配置すれば、出射角Θが充分に小さい場合には、活性領域14の長さ(経路Aの長さL)によらず、モードホッピングが生じないようにしつつ、発振波長λを連続的に変化させることができる。
【0123】
つづいて、図5を参照して、波長可変半導体レーザ10について行ったシミュレーションについて説明する。
【0124】
このシミュレーションは、光偏向部20の光導波層43の屈折率を変化させることにより、光の発振波長λが変化することを示すものである。図5において、縦軸は光の強度(任意単位)を示し、および横軸は、光の波長(μm)を示す。
【0125】
図に描かれた3本のグラフのうち、中央のグラフ(実線)Iは、光偏向部20において、光導波層43の屈折率を変化させなかった場合を示す。左側のグラフ(破線)IIは、光導波層43の屈折率を、僅かに減少させた場合を示す。右側のグラフ(一点鎖線)IIIは、光導波層43の屈折率を、僅かに増加させた場合を示す。
【0126】
なお、このシミュレーションにおいては、以下に列記する仮定の下で計算を行っている。すなわち、(1)第1面52の初期方向に沿った長さSが0.4μm、および配置角度Θgが45°の反射型回折格子18を用いている。(2)光結合部30の光伝播方向に沿った長さが350μm、幅が2μm、光導波層43の屈折率が3.4、およびp型層42と基板12の屈折率が互いに等しく3.385である。(3)活性領域14と光導波層43との間に屈折率差が存在し、および電極26,38に所定のオフセット電圧を印加することにより、出射角Θが予め5°となっている。(4)光導波路16および経路Aからなる光路を1往復した段階で、光を光出射端面22から取り出すとして、強度を求める。なお、これ以外の条件は、上述の波長可変半導体レーザ10と等しいと仮定している。
【0127】
図5において、図面左側のグラフIIは、電極26,38に印加する電圧を、オフセット電圧より小さくすることで、光導波層43の屈折率を2.8×10-3だけ減少している。これは、出射角Θを0.02rad(約1.2°)だけ小さくすることに対応する。このとき、ピーク波長は、約1.481μmである。
【0128】
同様に、図面中央のグラフIは、電極26,38に印加する電圧をオフセット電圧に保つことで、光導波層43の屈折率変化を0としている。このとき、ピーク波長は、約1.492μmである。
【0129】
また、図面右側のグラフIIIは、電極26,38に印加する電圧を、オフセット電圧より大きくすることで、光導波層43の屈折率を2.6×10-3だけ増加している。これは、出射角Θを0.02rad(約1.2°)だけ大きくすることに対応する。このとき、ピーク波長は、約1.503μmである。
【0130】
このように、出射角Θを±1.2°の範囲で変えることで、光の発振波長λを約20nmに渡って変化させることができる。また、約20nmに渡る発振波長λの変化にあたっては、縦モード次数は一定であった。つまり、モードホッピングは生じなかった。
【0131】
なお、このシミュレーションにおける、光偏向部20の屈折率変更幅(−2.8×10-3〜2.6×10-3)は、光導波層43の屈折率(3.4)に対して、約±0.1%程度に止まっている。これは、光偏向部20の屈折率制御を、電気光学効果により行っているためである。仮に、光偏向部20の屈折率制御を、電流注入による自由キャリアプラズマ効果を利用して行った場合、屈折率変更幅を±1%程度にまで広くすることができる。このようにした場合、光の発振波長λの変化幅を100nmオーダとすることができる。
【0132】
また、いずれのグラフも、波長分布がブロード(幅広)であるが、これは、仮定(4)で述べたように、光路を1往復した段階で光を取り出しているために、光の波長が充分に単色化されないためである。実際の場合には、光は、光路を何往復もした後に光出射端面22から出射するので、単色化が充分に進み、より狭い波長分布となる。
【0133】
このように、この実施の形態の波長可変半導体レーザ10によれば、活性領域14で発生した光が、反射面24と反射型回折格子18との間の光路(光導波路16および経路A)として構成される光共振器で共振されることで、所定の発振波長λの光として光出射端面22から取り出される。この光共振器においては、光偏向部20が、光導波路16から反射型回折格子18に向けた光の出射角Θを変えることにより、反射型回折格子18へ入射する光の入射角α、および光路(光導波路16および経路A)の光路長(共振器長T)を同時に変更する。このように、反射型回折格子18への入射角αの変更に伴い生じる波長選択と、共振器長Tの変化とを同時に行うことにより、レンズを設けることなく、モードホッピングを解消して幅広い範囲で発振波長λを変更することができる。
【0134】
また、第1の従来技術では、連続して発振波長を変化させるために、分布ブラッグ反射鏡領域に印加する電流と同時に、位相調整領域に印加する電流をも制御しなければならず、電流の制御が複雑であった。しかし、波長可変半導体レーザ10によれば、光偏向部20に印加する電圧を制御するという簡単な操作で、反射型回折格子18への光の入射角α、したがって発振波長λを変化させることができる。
【0135】
また、反射型回折格子18の格子面28の延びる方向と、光導波路16の光伝播方向とのなす角度がπ/4となるように、反射型回折格子18を配置した。その結果、光偏向部20と反射型回折格子18との間に介在する活性領域14の光路(経路A)に沿った長さLによらず、モードホッピングを解消することができる。これにより、利得を有する活性領域14(経路Aの長さL)を長くすることができるので、光の出力を大きくすることができる。
【0136】
また、図4に示すように、この実施の形態では、反射型回折格子18の第1面52の初期方向に沿った長さSを、中心波長と等しい値とした。これにより、理由は明らかではないが、光出射端面22から出射される光の強度分布を、ガウス分布に近い、滑らかな分布とすることができる。
【0137】
この様子を、図6を参照して説明する。図6(A)および(B)は、光出射端面22から出射される光の強度分布のシミュレーション結果である。図6(A)および(B)の縦軸は、光の強度(任意単位)であり、および横軸は、光の中心を原点として、光導波路16の厚さ方向に沿った距離(任意単位)を示す。図6(A)は、第1面52の初期方向に沿った長さSが、中心波長と等しい場合である。図6(B)は、第1面52の初期方向に沿った長さSが、中心波長と異なる場合である。
【0138】
図6(A)では、強度分布は、ガウス分布に近い滑らかな分布であるのに対し、図6(B)は、強度分布の大まかな形状は、図6(A)と同様な傾向を示すが、グラフ全体に渡って細かい凹凸が見られる。
【0139】
シミュレーションより、光出射端面22からの距離が100〜300μmの範囲で、この傾向が持続することが明らかとなった。
【0140】
なお、別のシミュレーションより、反射型回折格子18の第1面52の初期方向に沿った長さSを、中心波長の自然数倍とした場合にも、上述と同様に、光の強度分布をガウス分布に近い滑らかな分布とすることができることが明らかとなった。
【0141】
なお、上述に説明したように、反射型回折格子18の第1面52の初期方向に沿った長さSは、中心波長の自然数倍であることが実用上最も好ましい。しかし、これは、長さSを中心波長の自然数倍の長さに限定する趣旨ではない。なぜなら長さSが中心波長の自然数倍と異なっていたとしても、モードホッピングを生じることなく波長を変化することができるからである。つまり、光出射端面22から出射される光の強度分布の凹凸を実用上許容できるのであれば、長さSを中心波長の自然数倍と異なった値としてもよい。
【0142】
なお、この実施の形態においては、反射型回折格子18の配置角度Θgは45°とされているが、(18)式の条件を満たすように、neおよびLeを調整すれば、配置角度Θgは45°に限定されず、0°より大きく、かつ、90°より小さい範囲の中で選択された角度とすることができる。
【0143】
配置角度Θgについて、図7を参照して詳細に説明する。なお、図7においては、図1および図3と同様の構成要素には同符号を付し、その説明を省略する。
【0144】
たとえば、図7(A)に示すように、配置角度Θgが45°よりも小さい場合、つまり、反射型回折格子18を、より寝せた状態で配置した場合を考える。この場合には、光結合部30から出射された、一定の幅W4sinΘの光Iaが、反射型回折格子18に広い照射面積aに照射される。つまり、光Iaは、反射型回折格子18の配置角度Θgを45°とした場合よりも、多数の格子溝で回折されることになる。その結果、一度の回折で、光Iaは、配置角度Θgが45°の場合よりも単色化が進む。その一方、光Iaの発振波長λを狭い範囲でしか変化できなくなる。以上をまとめると、反射型回折格子18の配置角度Θgを45°よりも小さくした場合、光の単色化には有利であるが、発振波長λを狭い範囲でしか変化できない。
【0145】
図7(B)に示すように、配置角度Θgが45°よりも大きい場合、光Ibは、反射型回折格子18に狭い照射面積bに照射され、出射角Θの変化可能範囲Θbは大きくなる。このことより、上述と同様の議論で、反射型回折格子18の配置角度Θgを45°よりも大きくした場合、光の単色化には不利であるが、発振波長λを広い範囲で変化することができる。
【0146】
よって、反射型回折格子18の配置角度Θgは、光の単色化と、発振波長λの変化可能範囲とを勘案して、設計に応じて適切な値を選択できる。
【0147】
また、この実施の形態においては、光結合部30は、長さW4を300μm、絶縁層48の幅を1μmとしている。この寸法は、この実施の形態の波長可変半導体レーザ10においては、最適な寸法である。しかし、波長可変半導体レーザ10の各部の寸法を変更した場合には、光結合部30の長さW4および絶縁層48の幅も、設計に応じて適切な値とすることが好ましい。
【0148】
たとえば、光結合部30の長さW4を長くした場合には、光結合部30から活性領域14に向けて出射される光の幅W4sinΘが広くなる。つまり、反射型回折格子18に入射する光の照射面積が広くなる。その結果、反射型回折格子18において、光は、より多数の格子溝で回折されることになり、光の単色化には有利である。また、この場合、100%の光結合効率を得るためには、絶縁層48の幅を広くすることができる。この結果、活性領域14と光導波路16との間隔が広がるので、寸法的に見て製造が容易である。しかし、この場合、波長可変半導体レーザ10の大型化が避けられない。
【0149】
一方、光結合部30の長さW4を短くした場合には、上述とは逆の議論により、反射型回折格子18における光の照射面積が狭くなるため、光の単色化には不利である。また、絶縁層48の幅を狭くしなければならないので、寸法的に見て製造に困難が伴う。しかし、波長可変半導体レーザ10を小型化することができる。
【0150】
よって、光結合部30の長さW4、および絶縁層48の幅は、上述した得失を勘案して、設計に応じて適切な値とすることが好ましい。
【0151】
また、この実施の形態においては、光偏向部20は、電気光学効果を利用して、光導波層43の屈折率を制御していた。しかし、屈折率を、たとえば、音響光学効果や自由キャリアプラズマ効果を利用して制御してもよい。特に、自由キャリアプラズマ効果を用いた場合には、上述のように屈折率変更幅を±1%程度とすることができるので、より広い範囲で光の発振波長λを変化することができる。
【0152】
また、この実施の形態においては、反射型回折格子18として、ブレーズド格子を用いている。しかし、反射型回折格子18としては、ブレーズド格子に限らず、格子溝50の断面形状が鋸歯状以外の形状を有するレリーフ型回折格子や、屈折率変調型回折格子を用いてもよい。
【0153】
また、反射型回折格子18の格子溝50が形成された面に、たとえば、屈折率が異なる誘電体膜を交互に積層した誘電体多層膜からなる反射膜を設けてもよい。このようにすることにより、反射型回折格子18での光の反射率を高めることができる。
【0154】
また、この実施の形態の波長可変半導体レーザ10は、光通信用波長帯(1.3〜1.5μm)で用いられることを想定している。そのため、活性領域14は、n型InP(n型クラッド層)、InGaAsP(活性層32)、およびp型InP(p型クラッド層34)が、この順序で積層されたダブルへテロ構造とされていた。しかし、活性領域14の構造は、これに限定されず、たとえば、n型AlGaAs(n型クラッド層)、GaAs(活性層)、およびp型AlGaAs(p型クラッド層)からなる積層構造、n型ZnSSe(n型クラッド層)、ZnCdSe(活性層)、およびp型ZnSSe(p型クラッド層)からなる積層構造、または、n型GaN(n型クラッド層)、InGaN(活性層)、およびp型GaN(p型クラッド層)からなる積層構造のいずれかを、発振波長に応じて選択してもよい。
【0155】
また、この実施の形態において、活性領域14は、光導波路16の一端16bと対向している。この対向部分は、必須の構成要件ではなく、設計に応じて適当な形状とすることができる。たとえば、図8(A)に示すように、上述した対向部分を取り除き、活性領域14と光導波路16とが、光結合部30のみにおいて、光結合可能に対向した構造とすることができる。
【0156】
また、この実施の形態においては、平面視での活性領域14の形状をほぼテーパ状としているが、活性領域14は、光結合部30から反射型回折格子18への光の伝播を妨げることがなければ、その形状に特に制限はない。たとえば、図8(B)に示すように、活性領域14を、平面視でほぼ矩形状としてもよい。
【0157】
また、この実施の形態においては、側面14cと16cとの間の間隔、すなわち絶縁層48の幅は、場所によらず等しく1μmとされていた。つまり、側面14cと16cとは平行に配置されていた。しかし、側面14cと16cとは必ずしも平行に配置する必要はなく、光導波路16の一端16bから他端16aにかけて徐々に幅が広くなるように配置してもよい。つまり、絶縁層48の幅を光導波路16の一端16bから他端16aにかけて徐々に広くしてもよい。このようにすることによっても、実用上充分な光結合効率が得られる。
【0158】
また、この実施の形態においては、反射型回折格子18を活性領域とは別体として、基板12に貼り付ける構成としていたが、反射型回折格子18を基板12と一体としてもよい。
【0159】
(実施の形態2)
つぎに、図9を参照して、実施の形態2の波長可変半導体レーザの構造について説明する。図9は、実施の形態2の波長可変半導体レーザの概略構造を示す一部切欠斜視図である。
【0160】
なお、実施の形態2の波長可変半導体レーザ70は、反射型回折格子72が活性領域14の端面14aに設けられた以外は、実施の形態1の波長可変半導体レーザ10と同様である。よって、図9においては、図1と同様の構成要素には同符号を付し、その説明を適宜省略する。
【0161】
波長可変半導体レーザ70においては、反射型回折格子72が、活性領域14において、光導波路16から活性領域14へと入射された光が照射される端面14aに形成されている。
【0162】
より詳細には、反射型回折格子72は、平面視で略三角形状の活性領域14において、光結合部30が設けられた辺を底辺としたときに、この底辺の延長線とのなす外角がΘgである辺に対応する端面14aに設けられている。つまり、実施の形態1とは異なり、反射型回折格子72と活性領域14とが一体とされている。
【0163】
また、反射型回折格子72の表面、すなわち、端面14aにおいては、少なくとも活性層32を被覆して、反射膜78が成膜されている。この反射膜78は、たとえば、屈折率が異なるSiO2膜とSiN膜とを交互に積層した、いわゆる誘電体多層膜とする。
【0164】
この反射型回折格子72は、反射型平面回折格子であり、配置角度Θg、格子定数d、第1面74および第2面76の配置、ならびに第1面74の長さSは、実施の形態1と同様である。
【0165】
実施の形態2の波長可変半導体レーザ70は、実施の形態1の波長可変半導体レーザ10と同様の作用効果を奏するとともに、反射型回折格子72を活性領域14と一体としたので、波長可変半導体レーザ70を構成する部品数を削減することができ、かつ、波長可変半導体レーザ70のサイズを縮小することができる。
【0166】
また、実施の形態1では、光結合部30から、活性領域14に入射した光は、反射型回折格子18に至るまでに、一度活性領域14の外に出て間隙46(図1参照)を通過しなければならなかった。そのため、上述のように、間隙46において上面12aで乱反射されて光の強度が減少する虞があった。しかし、実施の形態2では、端面14aに反射型回折格子72を形成しているので、光が、活性領域14から外にでることがないので、光の強度減少を抑制することができる。
【0167】
実施の形態2の波長可変半導体レーザ70は、実施の形態1の波長可変半導体レーザ10と同様の変形が可能である。より詳細には、反射型回折格子72の配置角度Θg、反射型回折格子72の第1面74の長さS、光結合部30の長さW4、絶縁層48の幅、光偏向部20における屈折率制御法、活性領域14の組成および積層構造、活性領域14の形状、ならびに絶縁層48の幅については、実施の形態1と同様の変更が可能である。
【0168】
(実施の形態3)
つぎに、図10を参照して、実施の形態3の波長可変半導体レーザの構造および動作について説明する。図10は、実施の形態2の波長可変半導体レーザの概略構造を示す斜視図である。
【0169】
なお、実施の形態3の波長可変半導体レーザ60は、光導波路16に位相調整領域62が設けられた以外は、実施の形態1の波長可変半導体レーザ10と同様である。よって、図10においては、図1と同様の構成要素には同符号を付し、その説明を適宜省略する。
【0170】
波長可変半導体レーザ60は、光導波路16の光出射端面22側に位相調整領域62が設けられている。より詳細には、位相調整領域62は、光導波路16において、光結合部30と重複しないような位置に設けられている。なお、位相調整領域62における積層構造は、光偏向部20と同様である。
【0171】
位相調整領域62は、p型層42の上面に、位相調整用電極64を備えている。この位相調整用電極64は、光偏向部20の電極26と電気的絶縁が確保できるだけの間隔を空けて配置されている。なお、基板12の他方の主面(下面)12bの位相調整用電極64に対応する位置にも、別の位相調整用電極(不図示)が設けられている。これら2つの位相調整用電極は、電極26と同じ積層構造を有している。
【0172】
位相調整領域62においては、2つの位相調整用電極に印加する電圧を調整することで、電気光学効果により光導波層43の屈折率を制御し、その結果、光導波路16の光路長を変化させる。
【0173】
実施の形態3の波長可変半導体レーザ60は、実施の形態1の波長可変半導体レーザ10と同様の作用効果を奏するとともに、位相調整領域62を設けているので、位相調整用電極に印加する電圧により、光の伝播する光路の光路長を変化させることができる。よって、光結合部30から活性領域14へと出射される光の初期位相を微調整することができる。
【0174】
より詳細には、光結合部30から活性領域14へと出射する光の出射角Θの角度変化を大きくしていくと、光の初期位相の非線形的な変化を無視できなくなる。つまり、出射角Θの角度変化が小さい場合には、出射角Θの変化に応じて、経路Aの長さLを線形的に変化させるように構成された波長可変半導体レーザ60の構造だけで、光の初期位相の変化を補償することができる。しかし、出射角Θの角度変化が大きくなると、この構造のみでは、光の初期位相の変化を補償できなくなってしまう。
【0175】
そこで、光導波路16に位相調整領域62を設けることにより、光導波路16の光路長を微調整することにより、非線形的な光の初期位相の変化を補償する。これにより、波長可変半導体レーザ60は、モードホッピングを生じることなく、連続的に発振波長λを変化させることができる。また、このときの位相調整の程度は僅かであるので、第1の従来技術のように精密さが要求されない。
【0176】
また、実施の形態3の波長可変半導体レーザ60は、実施の形態1の波長可変半導体レーザ10と同様の変形が可能である。より詳細には、反射型回折格子18の配置角度Θg、回折格子18の第1面52の長さS、光結合部30の長さW4、絶縁層48の幅、光偏向部20における屈折率制御法、活性領域14の組成および積層構造、活性領域14の形状、ならびに絶縁層48の幅については、実施の形態1と同様の変更が可能である。
【0177】
この実施の形態においては、位相調整領域62は、光偏向部20に隣接して設けられていたが、位相調整領域62と光偏向部20との間に間隔が設けられていてもよい。
【0178】
(実施の形態4)
つぎに、図11を参照して、実施の形態4の波長可変半導体レーザの構造および動作について説明する。図11は、実施の形態4の波長可変半導体レーザの概略構造を示す斜視図である。
【0179】
実施の形態4の波長可変半導体レーザ80は、いわば、実施の形態1の波長可変半導体レーザ10において、活性領域14と光導波路16とを入れ替えた構造である。よって、図11においては、図1と同様の構成要素には同符号を付し、その説明を適宜省略する。
【0180】
すなわち、波長可変半導体レーザ80は、基板12の長手方向に対向する一方の端面12c側に設けられた活性領域82と、他方の端面12d側に設けられた反射型回折格子18と、活性領域82と反射型回折格子18との間に設けられた光導波路87とを備える。
【0181】
活性領域82は、その光伝播方向に直交する断面形状が矩形状、および平面形状が光伝播方向に沿って長尺な矩形状の部品である。つまり、活性領域82は、チャネル型である。活性領域82は、矩形状の基板12の角部付近に配置されている。平面視で、活性領域82の長手方向(以下、光伝播方向とも称する)に沿った辺は、基板12の長手方向の辺と平行である。また、活性領域82の光伝播方向に直交する一端面82aが、基板12の端面12cと面一とされている。この端面82aが、光出射端面86である。活性領域82は、実施の形態1の活性領域14と同様の積層構造を有している。活性領域82は、誘導放出により光を発生するとともに、発生した光を、その長手方向に伝播することができる。
【0182】
反射型回折格子18は、平面形状が直角三角形状のブロック形態であり、基板12の端面12d側、すなわち、活性領域82が設けられた側の端面12cとは反対側に設けられている。反射型回折格子18の斜辺に対応する側面は、格子面28とされており、この格子面28に、実施の形態1と同様に、格子溝50が形成されている。格子面28は、活性領域82の光伝播方向と、0°より大きく、かつ、90°より小さい角度をなして延在している。
【0183】
光導波路87は、平面形状が略台形状の部品であり、反射型回折格子18と活性領域82との間に介在している。光導波路87は、基板12の主面12a上に設けられた光導波層84と、光導波層84上に設けられた、光導波層84と同じ平面形状のp型層85とを備える。
【0184】
より詳細には、光導波路87は、平面視で、反射型回折格子18および活性領域82に対応する領域が切り欠かれている以外は基板12とほぼ同形状をなしている。光導波路87は、平面型光導波路である。光導波層84の反射型回折格子18側の端面84aと格子面28とは、微小な間隙88を隔てて互いに対向している。また、光導波路87の活性領域82に対応する切り欠き部96に、活性領域82が、いわば嵌め込まれるように配置されている。また、光導波路87、より詳細には、光導波層84は、後述する光結合部30から光導波路87へと入射した光を、反射型回折格子18方向に向けて伝播し、および反射型回折格子18で反射された戻り光を光結合部30に向けて伝播する。
【0185】
切り欠き部96において、光導波路87の側面87bは、活性領域82の長手方向の側面82bと微小な間隙90を隔てて互いに対向しており、この間隙90に実施の形態1と同様な絶縁層48が設けられている。側面87b、側面82b、および絶縁層48により光結合部30が構成されている。光結合部30は、実施の形態1と同様に、光導波路87(光偏向部92)と活性領域82との間で光結合を行う。
【0186】
光導波路87において、光結合部30を挟んで、活性領域82と対向した領域には、光偏向部92が設けられている。光偏向部92は、光導波路87中の一部分をなす領域であり、光導波層84の屈折率を制御するための電極94の存在により、光導波路87と区別されている。つまり、光偏向部92は、光導波路87のp型層85上に所定形状の電極94が設けられた構造を有している。
【0187】
電極94、つまり、光偏向部92は、平面視で直角三角形状をなし、直角の角部は、光結合部30の端面12c側の端部に一致するように配置されている。また、直角を挟む一方の底辺94bは、光導波路87の側面87bおよび上面がなす稜線と一致するように配置されている。そして、光偏向部92の直角の角部に対向する斜辺94aは、基板12の端面12d側から端面12c方向に向かうにつれて、徐々に高さが高くなるように傾斜している。
【0188】
光偏向部92は、実施の形態1と同様に、光偏向部92に含まれる光導波層84の屈折率を制御することにより、光偏向部92から反射型回折格子18に出射される光の出射角、したがって、反射型回折格子18への光の入射角および光路の長さを変更する。
【0189】
このように、波長可変半導体レーザ80においては、反射面24および反射型回折格子18とで光共振器が構成されている。
【0190】
以下、この波長可変半導体レーザ80の動作につき、簡単に説明する。
【0191】
活性領域82で発生した光は、実施の形態1と同様にして光結合部30を介して、光偏向部92へと結合される。光偏向部92(光導波層84)の屈折率を制御することにより、光は、出射角が調整された上で、光偏向部92から反射型回折格子18へと向けて出射される。反射型回折格子18に入射した光のうち、特定の回折角で反射された光は、特定波長に選択された戻り光として、上述とは逆の経路に沿って、光導波路87、光偏向部92および光結合部30を経て活性領域82へと帰還する。活性領域82へと帰還した光は、反射面24で反射され、再び上述の経路を辿って、反射型回折格子18に至る。このようにして、反射面24および反射型回折格子18からなる光共振器で光が幾度となく往復することにより、特定波長のレーザ光が発振する。
【0192】
このように、この実施の形態の波長可変半導体レーザ80によれば、活性領域82で発生した光が、反射面24と反射型回折格子18との間の光路として構成される光共振器で共振されることで、所定の発振波長の光として光出射端面86から取り出される。この光共振器においては、光偏向部92が、反射型回折格子18に向けた光の出射角を変えることにより、反射型回折格子18へ入射する光の入射角、および光路の光路長(共振器長)を同時に変更する。このように、反射型回折格子18への入射角の変更に伴い生じる波長選択と、共振器長の変化とを同時に行うことにより、レンズを設けることなく、モードホッピングを解消して幅広い範囲で発振波長を変更することができる。
【0193】
また、実施の形態1と同様の理由により、波長可変半導体レーザ80によれば、光偏向部92に印加する電圧を制御するという簡単な操作で、反射型回折格子18への光の入射角、したがって発振波長を変化させることができる。
【0194】
なお、この実施の形態においては、光偏向部92の平面形状を直角三角形状としているが、光偏向部92の平面形状は、反射型回折格子18に向けて出射される光の出射角を制御できるものであれば、直角三角形状に限定されない。たとえば、光導波路87の全面を光偏向部92としてもよい。つまり、電極94を光導波路87の全面に設けてもよい。このようにすることにより、実用上許容できる応答速度で光偏向部92の屈折率を変更することが可能である。
【0195】
また、この実施の形態においては、平面視での光導波路87の形状をほぼ台形状としているが、光導波路87は、光結合部30から反射型回折格子18への光の伝播を妨げることがなければ、その形状に特に制限はない。
【0196】
また、実施の形態4の波長可変半導体レーザ80は、実施の形態1の波長可変半導体レーザ10と同様の変形が可能である。より詳細には、反射型回折格子18の配置角度Θg、反射型回折格子18の第1面の長さS、光結合部30の長さW4、絶縁層48の幅、光偏向部92における屈折率制御法、ならびに活性領域82の組成および積層構造については、実施の形態1と同様の変更が可能である。
【0197】
(実施の形態5)
つぎに、図12を参照して、実施の形態5の波長可変半導体レーザの構造および動作について説明する。図12は、実施の形態5の波長可変半導体レーザの概略構造を示す斜視図である。
【0198】
実施の形態5の波長可変半導体レーザ100は、いわば、実施の形態3の波長可変半導体レーザ60において、活性領域14に対応する領域を、利得を持たない第2光導波路104とし、光導波路16を第1光導波路102とし、第1光導波路102の光出射端面106側端部に活性領域108を設けた構造である。よって、図12においては、図10と同様の構成要素には同符号を付し、その説明を適宜省略する。
【0199】
すなわち、波長可変半導体レーザ100は、基板12の長手方向に対向する一方の端面12c側に設けられた第1光導波路102と、他方の端面12d側に設けられた反射型回折格子18と、第1光導波路102と反射型回折格子18との間に設けられた第2光導波路104とを備える。
【0200】
第1光導波路102は、基板12の端面12cから端面12dに向かう方向に順に、活性領域108、位相調整領域62および光偏向部20が直列に一体に配置された構造である。第1光導波路102は、その光伝播方向に直交する断面形状が矩形状、および平面形状が光伝播方向に沿って長尺な矩形状の部品である。つまり、第1光導波路102は、チャネル型である。
【0201】
活性領域108は、基板12と、基板12の主面12a上に設けられた活性層112と、この活性層112上に設けられたp型クラッド層114と、このp型クラッド層114上に設けられた電極116、および、基板12の他方の主面(下面)12bに設けられた電極(図示せず)とを備えている。主面12bに設けられる電極は、実施の形態1の場合と同様に、位相調整領域62および光偏向部20において主面12bに設けられる電極を兼ねた共通電極とされている。活性領域108において、基板12の端面12c側の端面108aは、光出射端面106とされている。また、この端面108aには反射膜が設けられ、この反射膜が、反射面120を構成している。なお、活性領域108における積層構造は、電極116を含めて実施の形態1の活性領域14と同様である。
【0202】
位相調整領域62は、第1光導波路102において、活性領域108と光偏向部20との間に設けられている。位相調整領域62は、実施の形態3と同様であるため、その説明を省略する。なお、位相調整領域62は、活性領域108との間、および光偏向部20との間に電気的絶縁が確保できるだけの間隔を空けて配置されている。
【0203】
光偏向部20は、実施の形態1と同様であるため、その説明を省略する。
【0204】
光結合部30は、第1光導波路102の光伝播方向と平行な側面102cと、この側面102cと離間して対向する、第2光導波路104の側面104cと、両側面102cおよび104cの間に設けられた絶縁層48とを備える。
【0205】
第2光導波路104は、平面型光導波路である。その積層構造は、電極26(図2参照)、および基板12の他方の主面(下面)12bに設けられた電極38を有さない点以外は、実施の形態1の光導波路16と同様である。より詳細には、第2光導波路104は、基板12上に設けられた光導波層122と、光導波層122の上に設けられたp型層124とを備える。つまり、第2光導波路104は、利得を有しておらず、光結合部30から反射型回折格子18に向けて、またはその逆方向に光を導波する機能を有する。また、第2光導波路104は、平面形状に限ってみれば、実施の形態1の活性領域14と同様の形状である。
【0206】
反射型回折格子18は、実施の形態1と同様であるのでその説明を省略する。
【0207】
また、波長可変半導体レーザ100の動作は、光が、第1光導波路102の端部に設けられた活性領域108で発生する点、および、第2光導波路104が利得を有していない点を除けば、実施の形態3と同様である。よって、その説明を省略する。
【0208】
活性領域108で発生した光は、第1光導波路102を伝播して、位相調整領域62を経て光偏向部20へと至る。光偏向部20では、電極26に印加する電圧により光導波層43の屈折率が調整されている。これにより、光は、出射角が調整された上で、光結合部30へと結合され、反射型回折格子18に向けて出射される。出射された光は、第2光導波路104を伝播して、反射型回折格子18へ入射する。反射型回折格子18に入射した光のうち、特定の回折角で反射された光は、特定波長に選択された戻り光として、上述とは逆の経路に沿って、第2光導波路104、光結合部30および光偏向部20を経て活性領域108へと帰還する。このようにして、反射面120および反射型回折格子18からなる光共振器で光が幾度となく往復することにより、特定波長のレーザ光が発振する。
【0209】
このように、この実施の形態の波長可変半導体レーザ100によれば、活性領域108で発生した光が、反射面120と反射型回折格子18との間の光路として構成される光共振器で共振されることで、所定の発振波長の光として光出射端面106から取り出される。この光共振器においては、光偏向部20が、反射型回折格子18に向けた光の出射角を変えることにより、反射型回折格子18へ入射する光の入射角、および光路の光路長(共振器長)を同時に変更する。このように、反射型回折格子18への入射角の変更に伴い生じる波長選択と、共振器長の変化とを同時に行うことにより、レンズを設けることなく、モードホッピングを解消して幅広い範囲で発振波長を変更することができる。
【0210】
また、第1光導波路102に位相調整領域62を設けることにより、第1光導波路102の光路長を微調整し、非線形的な光の初期位相の変化を補償する。これにより、波長可変半導体レーザ100は、モードホッピングを生じることなく、連続的に発振波長を変化させることができる。また、このときの位相調整の程度は僅かであるので、第1の従来技術のように精密さが要求されない。
【0211】
なお、実施の形態5の波長可変半導体レーザ100は、実施の形態1の波長可変半導体レーザ10と同様の変形が可能である。より詳細には、反射型回折格子18の配置角度Θg、反射型回折格子18の第1面の長さS、光結合部30の長さ、絶縁層48の幅、光偏向部20における屈折率制御法、ならびに活性領域108の組成および積層構造については、実施の形態1と同様の変更が可能である。
【図面の簡単な説明】
【0212】
【図1】実施の形態1の波長可変半導体レーザの概略構造を示す斜視図である。
【図2】図1のI−I線に沿った要部拡大断面図である。
【図3】実施の形態1の波長可変半導体レーザの構造上の条件および動作の説明に供する模式図である。
【図4】実施の形態1の波長可変半導体レーザの反射型回折格子付近を模式的に示した要部拡大模式図である。
【図5】(A)および(B)は、実施の形態1の波長可変半導体レーザについて行ったシミュレーション結果を示す図である。
【図6】(A)および(B)は、実施の形態1の波長可変半導体レーザの、光出射端面から出射される光の強度分布を模式的に示す図である。
【図7】(A)および(B)は、実施の形態1の波長可変半導体レーザの、反射型回折格子の配置角度変化の説明に供する模式図である。
【図8】(A)および(B)は、実施の形態1の波長可変半導体レーザの、波長可変半導体レーザの変形例を示す平面図である。
【図9】実施の形態2の波長可変半導体レーザの概略構造を示す一部切欠斜視図である。
【図10】実施の形態3の波長可変半導体レーザの概略構造を示す斜視図である。
【図11】実施の形態4の波長可変半導体レーザの概略構造を示す斜視図である。
【図12】実施の形態5の波長可変半導体レーザの概略構造を示す斜視図である。
【符号の説明】
【0213】
10,60,70,80,100 波長可変半導体レーザ
12 基板
12a,12b 主面
14,82,108 活性領域
14a,12c、12d,82a,84a,108a 端面
14c,16c,82b,84b,87b,102c,104c 側面
16 光導波路
16a 他端
16b 一端
18,72 反射型回折格子
20,92 光偏向部
22,86,106 光出射端面
24,120 反射面
26,36,38,94,116 電極
28 格子面
30 光結合部
32,112 活性層
34,114 p型クラッド層
42,85,124 p型層
43,84,122 光導波層
46,88,90 間隙
48 絶縁層
50 格子溝
52,74 第1面
54,76 第2面
62 位相調整領域
64 位相調整用電極
78 反射膜
94a 斜辺
94b 底辺
96 切り欠き部
102 第1光導波路
104 第2光導波路

【特許請求の範囲】
【請求項1】
活性領域と、光導波路と、
該光導波路の光伝播方向に沿う側面を前記活性領域と対向させて該光導波路と前記活性領域とを光結合する光結合部と、
該光結合部を挟んで前記活性領域と対向して設けられていて前記光導波路を含む光偏向部と、
前記光導波路に対して、前記活性領域を挟んで設けられていて、該光導波路から入射された光を波長選択された戻り光として該光導波路へ帰還させる反射型回折格子と、
前記光導波路の、前記光伝播方向と直交する光出射端面に設けられていて、前記反射型回折格子と相俟って光共振器を構成する反射面と
を備え、
前記光偏向部は、前記光導波路から前記反射型回折格子に向かう光の出射角を変えることによって、該反射型回折格子への入射角と光路の長さとを変更することを特徴とする波長可変半導体レーザ。
【請求項2】
前記反射型回折格子は、前記活性領域と別部品とされていることを特徴とする請求項1記載の波長可変半導体レーザ。
【請求項3】
前記反射型回折格子は、前記活性領域において、前記光導波路から前記活性領域へと入射された光が照射される端面に形成されていることを特徴とする請求項1に記載の波長可変半導体レーザ。
【請求項4】
前記光偏向部は、電気光学的に前記光導波路の屈折率を変えることにより、前記入射角を変える構成とすることを特徴とする請求項1〜3のいずれか一項に記載の波長可変半導体レーザ。
【請求項5】
前記反射型回折格子は、格子面が平面状に形成されていて、前記光導波路の前記光伝播方向と、該格子面の法線とが45°の角度をなすように、配置されていることを特徴とする請求項1〜4のいずれか一項に記載の波長可変半導体レーザ。
【請求項6】
前記光導波路に、さらに前記光路の光路長を変化させるための位相調整領域が設けられていることを特徴とする請求項1〜5のいずれか一項に記載の波長可変半導体レーザ。
【請求項7】
前記反射型回折格子が、前記光導波路の前記光伝播方向と前記格子面の法線とが、0°より大きく、かつ、90°より小さい角度をなすように配置されたブレーズド格子であって、
前記光偏向部が前記入射角を変更しない状態における前記光導波路から前記反射型回折格子に向かう光の光伝播方向を初期方向とするときに、
前記ブレーズド格子が、互いに交差する、前記初期方向に平行な第1面および前記初期方向に垂直な第2面からなる格子溝を備えており、
前記第1面の前記初期方向に沿った長さが、前記活性領域で発生する光の、前記活性領域内における中心波長の自然数倍であることを特徴とする請求項1〜4、および6のいずれか一項に記載の波長可変半導体レーザ。
【請求項8】
活性領域と、光導波路と、
該活性領域の光伝播方向に沿う側面を前記光導波路と対向させて該光導波路と前記活性領域とを光結合する光結合部と、
該光結合部を挟んで前記活性領域と対向して設けられていて前記光導波路を含む光偏向部と、
前記活性領域に対して、前記光導波路を挟んで設けられていて、該活性領域から入射された光を波長選択された戻り光として該活性領域へ帰還させる反射型回折格子と、
前記活性領域の、前記光伝播方向と直交する光出射端面に設けられていて、前記反射型回折格子と相俟って光共振器を構成する反射面と
を備え、
前記光偏向部は、前記活性領域から前記反射型回折格子に向かう光の伝播方向を変えることによって、該反射型回折格子への入射角と光路の長さとを変更することを特徴とする波長可変半導体レーザ。
【請求項9】
光出射端面側の端部付近に活性領域を備えた第1光導波路と、第2光導波路と、
該第1光導波路の前記光伝播方向に沿う側面を前記第2光導波路と対向させて第1および第2光導波路を光結合する光結合部と、
該光結合部を挟んで前記第2光導波路と対向して設けられていて前記第1光導波路を含む光偏向部と、
前記第1光導波路に対して、前記第2光導波路を挟んで設けられていて、該第1光導波路から入射された光を波長選択された戻り光として該第1光導波路へ帰還させる反射型回折格子と、
前記活性領域の、前記光伝播方向と直交する光出射端面に設けられていて、前記反射型回折格子と相俟って光共振器を構成する反射面と
を備え、
前記光偏向部は、前記第1光導波路から前記反射型回折格子に向かう光の出射角を変えることによって、該反射型回折格子への入射角と光路の長さとを変更することを特徴とする波長可変半導体レーザ。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate

【図7】
image rotate

【図8】
image rotate

【図9】
image rotate

【図10】
image rotate

【図11】
image rotate

【図12】
image rotate


【公開番号】特開2006−237152(P2006−237152A)
【公開日】平成18年9月7日(2006.9.7)
【国際特許分類】
【出願番号】特願2005−47585(P2005−47585)
【出願日】平成17年2月23日(2005.2.23)
【出願人】(000000295)沖電気工業株式会社 (6,645)
【Fターム(参考)】