説明

FSK受信機

【課題】FSK受信機において、送受信の周波数偏差に起因して生じるDCオフセット成分の補正を、多値のFSK信号に対して、適切かつ迅速に行えるようにする。
【解決手段】キャリア周波数偏差の最大値および最小値の平均値(中央値)からDCオフセット補正を行うにあたって、(a)のサンプル値P1〜P9を取込んでゆき、(d)のように最大値を更新し、(e)のように最小値を更新し、(f)で示すそれらの差が所定値、たとえば1500Hz未満であるときには補正動作を休止し、所定値以上となると、(a)のP3からP3’で示すように補正動作を行う。したがって、多値FSK信号で、近い値同士を使用しては補正は行われず、真の最大値および最小値が得られた場合にだけ補正を行うので、周波数偏差を正確に検出でき、適切なオフセット除去を行うことができる。また、長時間信号を監視する必要はなく、迅速に補正を行うこともできる。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、FSK受信機に関し、特に送受信の周波数偏差の関係で復調信号に重畳したDCオフセットを除去する手法に関する。
【背景技術】
【0002】
たとえば400MHz帯のデジタル無線機のように、前記FSK(Frequency Shift Keying)変調方式を用いる受信機の場合、復調は周波数−電圧変換で行われ、復調信号としては、2値や4値の複数の周波数に対応したレベルの電圧が出力され、送受信の周波数偏差の関係で、前記復調信号にDCオフセットが重畳する。このため、従来では、ハイパスフィルタを用いて前記DCオフセットを除去する方法や、ローパスフィルタを用いて前記DCオフセットを抽出し、それを復調波形から減算する方法が用いられている。
【0003】
しかしながら、前記ハイパスフィルタを用いる方法では、同じシンボルが連続した場合、或る一定のDC成分を持った復調信号が得られることになるが、前記ハイパスフィルタを通過するとそのDC成分が失われ、感度が低下するという問題がある。また、前記ローパスフィルタを用いる方法では、そのローパスフィルタの通過帯域はシンボルレートより遙かに小さい値としなければならず、信号処理におけるサンプル量(演算量)が増えてしまうという問題がある。
【0004】
そこで、このような問題に対応するために、たとえば特許文献1〜3が提案されている。概略的に、これらの先行技術は、受信シンボル値の最大値と最小値との平均値から補正量を決定し、中心周波数の補正を行うものである。
【0005】
先ず、特許文献1は、2値のビット同期信号が2/(baud速度)sec周期の繰返しであることを利用して、受信した同期信号を1/(baud速度)sec、すなわち180°離して2回標本化し、得られた2つの標本値をホールドキャパシタで平均化し、その値からオフセット値を算出し、ベースバンド信号から減算することで、簡単な回路構成で中心レベルの誤差を検出し、補正するようにした中心誤差検出補正回路である。
【0006】
また、特許文献2は、受信ベースバンド信号をサンプリング(A/D変換)し、所定時間毎にそのサンプル値の最大値と最小値とを検出してそれらの中央値を求め、その中央値をA/D変換後の受信ベースバンド信号から減算する一方、前記中央値の前記所定時間当りの変動を求め、その変動量が大きくなる程、前記所定時間を短くすることで、低周波域にも大きな電力を持つベースバンド信号の直流成分(DCオフセット)を、波形を損なうことなく除去するとともに、高速にオフセット除去を行え、データ読取りまでの時間を短縮できるようにしたオフセット電圧補正回路である。
【0007】
さらにまた、特許文献3は、受信信号を増幅および中間周波に変換した後、アナログ/デジタル変換し、それを直交復調した後、I,Qそれぞれの帯域をフィルタで抽出して周波数−電圧変換し、その信号の最大値および最小値を求めてそれらの中間値を弁別閾値とし、前記周波数−電圧変換した信号を弁別することで、オフセットを考慮した弁別を行えるようにした半導体回路装置である。またこの特許文献3には、ノイズにより誤って大きなオフセット値を算出しても、回路が発振状態となることを防ぐために、オフセット値に所定のゲインを掛けることも示されている。
【特許文献1】特開平11−298542号公報
【特許文献2】特許第3674745号公報
【特許文献3】特開2006−94245号公報
【発明の開示】
【発明が解決しようとする課題】
【0008】
上述の従来技術では、前記DCオフセットの抽出にフィルタを用いる場合に比べて、演算量を1/20〜1/8程度に削減することができる。しかしながら、上述の従来技術は、何れも2値を前提としている。このため、信号レベルに変化があれば、それぞれ前記最大値および最小値となり、前記のような補正で対応することができる。しかしながら、限られた電波資源を有効に活用するために、3値以上の多値での使用を考えると、信号レベルに変化があっても、それが補正の基準値である最大値および最小値であるのかが分らず、たとえば「00」,「01」,「10」,「11」の4値の場合、「00」と「01」、或いは「10」と「11」のように、中央値を跨がないような値や、「00」と「10」、「01」と「11」のように、中央値を跨いでも、その中央値からの偏差が不均等な値に基づいてオフセット補正を行ってしまうと、周波数偏差を正確に検出できず、送信周波数に受信周波数を一致させられなかったり、シンボルを復調できなかったりするという問題がある。一方、信号レベルを長時間監視すれば、前記最大値および最小値を正確に検出することができる可能性は高くなるが、シンボルの復調、たとえば音声出力の開始までに時間が掛かるという問題が生じる。
【0009】
本発明の目的は、多値FSK信号から、適切なオフセット除去を迅速に行うことができるFSK受信機を提供することである。
【課題を解決するための手段】
【0010】
本発明のFSK受信機は、補正手段が、復調信号の最大値および最小値の中央値からDCオフセット成分の補正を行うようにしたFSK受信機において、前記最大値と最小値との差が予め定める閾値TH1未満であるときには、前記補正手段による補正動作を休止させる第1の補正制御手段を含むことを特徴とする。
【0011】
上記の構成によれば、アンテナで受信された信号を必要に応じて周波数変換し、得られた中間周波信号をデジタル変換して復調回路へ入力し、その復調回路において、前記中間周波信号が直交変換されて得られたI成分、Q成分が直交検波され、さらに遅延検波されて検出された振幅値(周波数偏差)からシンボルデータが求められるFSK受信機において、送受信の周波数偏差に起因して生じるDCオフセット成分の補正を、補正手段が、復調信号の最大値および最小値の中央値から行うにあたって、第1の補正制御手段を設け、該第1の補正制御手段は、前記最大値と最小値との差が予め定める閾値TH1未満であるときには、前記補正手段による補正を休止させる。
【0012】
たとえば、前記閾値TH1は、(最大周波数偏差−最小周波数偏差)よりも小さく、かつn値変調(nは3以上)である場合に、(最大周波数偏差−最小周波数偏差)×(n−2)/(n−1)よりも大きく、適宜マージンを持たせて選ばれる。
【0013】
したがって、多値のFSK信号であっても、たとえば「00」,「01」,「10」,「11」の4値FSK信号で、「00」と「01」、或いは「10」と「11」のように近い値ではオフセット補正は行われず、「00」と「11」の前記最大値および最小値が得られた場合にだけオフセット補正を行うので、周波数偏差を正確に検出でき、適切なオフセット除去を行うことができる。また、信号レベルが小さく、ノイズレベルが大きい場合にもオフセット除去を休止するので、誤動作を防止することもできる。さらにまた、前記閾値TH1以上の信号が得られた時点でオフセット補正を行うので、長時間信号を監視する必要はなく、迅速にオフセット補正を行うことができる。
【0014】
好ましくは、前記補正手段は、受信高周波信号から中間周波信号を得る周波数変換器における局部発振器と前記中間周波信号を直交変換する直交変換器における局部発振器との一方の周波数を制御することで、前記DCオフセット成分の補正を行う。
【0015】
また好ましくは、前記補正手段は、前記復調信号のレベルをシフトすることで、前記DCオフセット成分の補正を行うことを特徴とする。
【0016】
さらにまた、本発明のFSK受信機は、ノイズレベルを検出するスケルチ回路と、前記スケルチ回路で検出されたノイズレベルが予め定める閾値TH2より大きい場合にも、前記補正手段による補正動作を休止させる第2の補正制御手段とをさらに備えることを特徴とする。
【0017】
上記の構成によれば、ノイズによる誤ったオフセット補正を防止することができる。
【発明の効果】
【0018】
本発明のFSK受信機は、以上のように、送受信の周波数偏差に起因して生じるDCオフセット成分の補正を、補正手段が、復調信号の最大値および最小値の中央値から行うにあたって、第1の補正制御手段を設け、該第1の補正制御手段は、前記最大値と最小値との差が予め定める閾値TH1未満であるときには、前記補正手段による補正を休止させる。
【0019】
それゆえ、多値のFSK信号の場合、近い値同士を使用してはオフセット補正は行われず、真の最大値および最小値が得られた場合にだけオフセット補正を行うので、周波数偏差を正確に検出でき、適切なオフセット除去を行うことができ、また信号レベルが小さく、ノイズレベルが大きい場合の誤動作を防止することもできる。さらにまた、前記閾値TH1以上の信号が得られた時点でオフセット補正を行うので、長時間信号を監視する必要はなく、迅速にオフセット補正を行うことができる。
【発明を実施するための最良の形態】
【0020】
図1は、本発明の実施の一形態に係るFSK受信機1の電気的構成を示すブロック図である。このFSK受信機1は、ダブルスーパーヘテロダイン方式で構成され、アンテナ3で受信された信号は、バンドパスフィルタ4を介して、たとえば440MHzのFSK高周波信号の成分が濾波され、アンプ5で増幅された後、1段目の混合器6に入力される。混合器6では、局部発振回路7からの、たとえば486.35MHzの発振信号と混合され、得られた、たとえば46.35MHzの中間周波信号(第1の中間周波信号)は、バンドパスフィルタ8によって、その中間周波成分が濾波され、アンプ9で増幅された後、2段目の混合器10に入力される。混合器10では、局部発振回路11からの、たとえば45.9MHzの発振信号と混合され、得られた、たとえば450kHzの中間周波信号(第2の中間周波信号)は、バンドパスフィルタ12によって、その中間周波成分が濾波され、アンプ(中間周波アンプ)13で増幅された後、アナログ/デジタル変換器14に入力される。アナログ/デジタル変換器14では、入力信号が、たとえば30kHzでダウンサンプリングされ、96ksps(sample per second)のレートのデジタル値に変換されて、復調回路21に入力される。
【0021】
前記復調回路21は、DSP(デジタルシグナルプロセッサ)などから成り、この復調回路21では、音声信号が復調されて、デジタル/アナログ変換器15でアナログ変換され、スピーカ16から音響化される。また、前記復調回路21は、その入力信号レベルに応じたデータをデジタル/アナログ変換器17に出力し、アナログ変換されて、RFアンプ5、中間周波アンプ9,13のゲイン制御が行われる。
【0022】
図2は、前記復調回路21の一構成例を示すブロック図である。前記アナログ/デジタル変換器14からの信号は、周波数変換器22に入力され、先ずハイパスフィルタ221によって高周波成分が濾波され、混合器222において、局部発振回路223からの、たとえば18kHz、96kspsのレートの発振信号と混合され、得られた12kHz、96kspsの信号は、バンドパスフィルタ224によってその信号成分が濾波された後、コンバータ23において、1/2間引き、すなわち1/2の周波数(48kHz)にダウンサンプルされて、直交変換器24に入力される。前記コンバータ23は、直交変換器24での処理を軽減するために設けられているものであり、前記直交変換器24での処理が対応可能な場合、省略されてもよい。
【0023】
直交変換器24では、入力された信号は2分配され、それぞれ混合器241,242に入力され、混合器241では局部発振回路243からの、たとえば12kHz、48kspsの発振信号と混合され、混合器242では局部発振回路243からの発振信号が移相器244で90°位相がシフトされた後混合され、直交変換されたそれぞれ48kspsのI成分、Q成分の信号となる。前記I成分、Q成分の信号は、ローパスフィルタ245,246を介して出力され、コンバータ25,26において、1/2の周波数(24kHz)にダウンサンプルされてローパスフィルタ27,28を通過し、位相検出器29に入力される。前記コンバータ25,26は、ローパスフィルタ27,28での帯域制限処理の負担を軽減するために設けられているものであり、ローパスフィルタ27,28での処理が対応可能な場合、省略されてもよい。
【0024】
位相検出器29は、前記I,Q成分から、I=cosθ、Q=sinθとして、θ=tan−1(Q/I)の演算を行い、信号の位相を求める。求められた位相は、周波数検出器30の加算器301において、遅延器302で遅延された1サンプル前の位相が減算され、位相の微分量である前記周波数偏差の量が求められる。こうして、位相検出器29および周波数検出器30は、検波回路を構成し、これらによって遅延検波を行い、その出力には、シンボルレート(2.4kHz)の10倍のサンプリングレート(24kHz)でオーバーサンプルされた復調信号が得られる。
【0025】
その復調信号は、逆Sincフィルタ31からルート・レイズド・コサインフィルタ32を介して、4値FSKシンボル再生回路33および同期ワードパターン検出回路34に入力される。前記逆Sincフィルタ31とルート・レイズド・コサインフィルタ32とは、送信側に挿入されているSincフィルタと共に、ルート・コサイン・ロールオフフィルタとして機能し、両者を合わせてナイキスト・フィルタを実現するとともに、前記Sincフィルタ31は高周波側を抑圧し、この逆Sincフィルタ31はそれを元に戻す(高周波側を強調する)ことで、帯域制限が実現されている。
【0026】
前記4値FSKシンボル再生回路33では、復調信号の振幅値(周波数偏差)から、前記4値FSKのシンボルデータが復調される。その復調にあたっては、この4値FSKシンボル再生回路33は、後述するようにして内部でシンボルクロックを発生し、前記2.4kHzのそのシンボルクロックのタイミングで、前記振幅値(周波数偏差)を取込んでマップ判定することで、前記振幅値(周波数偏差)が4値FSKにおける「00」,「01」,「10」,「11」の何れのシンボル値に該当するかを判断し、シンボルデータの再生を行う。この4値FSKシンボル再生回路33には、後述するように同期ワードパターン検出回路34から、同期ワードパターンの検出タイミングでリセット信号が入力され、前記内部のシンボルクロックのタイミング調整が行われる。
【0027】
前記4値FSKシンボル再生回路33で復調されたシンボルデータは、前記4値につき2ビットで、前記シンボルレートの2.4kspsの信号としてフレーム生成回路35へ出力される。フレーム生成回路35では、前記同期ワードパターン検出回路34で、後述するように同期ワードパターンが検出されている、すなわち正常に受信が行われていると、前記シンボルデータを所定のフレームに構成して、音声復調部3へ出力する。なお、この同期ワードパターン検出回路34によるシンボルクロックの補正および4値FSKシンボル再生回路33でのシンボルデータの再生については、後に詳述する。
【0028】
得られたシンボルデータは、前記音声復調部36において、サンプル周波数が前記2.4kHzの4値のデータから、所定の音声コーデック回路を使用して、圧縮されていた信号が伸長され、8kHz,16ビットのPCM音声信号に復調される。そのPCM音声信号は、コンバータ37において6倍の周波数(48kHz)でオーバーサンプルされ、ローパスフィルタ38を通過した後、デジタル/アナログ変換器39に入力され、アナログ音声信号に復調され、アンプ40で増幅された後、スピーカ41から音響化される。
【0029】
一方、前記アナログ/デジタル変換器14からの変換データはまた、コンバータ45において、1/24の周波数(4kHz)にダウンサンプルされてRSSI回路46に入力され、ハイパスフィルタ461において、前記アナログ/デジタル変換器14で混入した直流成分が除去された後、絶対値回路462で絶対値が求められ、さらにローパスフィルタ463で平均化されてRSSIレベルが求められ、図示しないインジケータなどに与えられるとともに、AGC演算回路42に入力される。AGC演算回路42は、前記RSSIレベルに基づいてIFゲインを演算し、そのデータは前記アナログ/デジタル変換器39でアナログ変換され、前記RFアンプ5、中間周波アンプ9,13のゲイン制御が行われる。
【0030】
上述のように構成されるFSK受信機1において、注目すべきは、本実施の形態では、補正手段であるDCオフセット補正回路50は、前記復調信号の最大値「11」および最小値「00」の中央値(F0’)に基づいて、局部発振回路223(または243)の発振周波数を調整して、DCオフセット成分(f0−F0’=Δf)の除去を行うにあたって、補正制御回路51,52が設けられており、その補正が場合によって休止されることである。なお、前記周波数変換器22は、後段での処理を軽減するために設けられており、省略されてもよい。その場合、局部発振回路243は、30kHz、96kspsの発振信号を出力し、前記周波数偏差によるDCオフセット補正は、この局部発振回路243の発振周波数を制御することで行われることになる。
【0031】
図3は、その補正の様子を示す波形図である。本実施の形態では、キャリア周波数f0に対して、たとえば最小値「00」での周波数偏差は−1050Hzに、「01」での周波数偏差は−350Hzに、「10」での周波数偏差は+350Hzに、最大値「11」での周波数偏差は+1050Hzに、それぞれ設定されているものとする。
【0032】
送信側のキャリア周波数f0に受信側のキャリア周波数F0が一致していると、図3(a)で示すように、サンプル点で得られたシンボル値は、前記の各周波数となる。なお、この図3では、説明の簡略化のために、サンプル点はアイパターンを考慮すると最も偏差の少ない点であるシンボル判定点としている。これに対して、送信側のキャリア周波数f0に受信側のキャリア周波数F0’が一致していないと、図3(b)で示すように、サンプル点で得られるシンボル値に、ずれを生じる。この図3(b)の例では、受信側のキャリア周波数F0’が高い側にずれているので、前記最小値「00」のデータは現れず、残りの「01」,「10」,「11」のデータのみとなり、感度劣化の原因となる。このため、前述のように、復調信号の最大値「11」および最小値「00」の中央値(F0’)に基づいて、局部発振回路223(または243)の発振周波数を調整して、DCオフセット成分(f0−F0’=Δf)の除去が行われる。
【0033】
図4は、前記DCオフセット補正回路50の補正動作に、第1の補正制御手段である前記補正制御回路51の制御動作を説明するための図である。前記ルート・レイズド・コサインフィルタ32からは、前記復調信号として、図4(a)で示すような波形のデータが、シンボルレート(2.4kHz)の10倍の前記24kHzでオーバーサンプリングされた状態(24ksps)で出力されており、それが前記4値FSKシンボル再生回路33において、前記シンボルレートの2.4kHzでサンプリングされると、図4(a)において黒丸で示すサンプル値(周波数偏差)P1〜P9が得られる。なお、この図4(a)では、スケールは周波数偏差の周波数で表しているが、実際にルート・レイズド・コサインフィルタ32から出力されるのは、この図4(a)で示すようなDC波形の波高値のデータであり、説明を分り易くするために、そのDC値を周波数に読替えて表示している。
【0034】
ここで、前記DCオフセット補正回路50は、DCオフセット補正を行うにあたって、前記サンプル値P1〜P9を取込んでゆき、図4(d)で示すように、既存値より大きな値が入力されると、それを最大値として更新してゆく。同様に、図4(e)で示すように、既存値より小さな値が入力されると、それを最小値として更新してゆく。一方、補正制御回路51は、図4(f)で示すように、それらの最大値と最小値との差を求め、その差が予め定める閾値TH1未満であるときには、前記DCオフセット補正回路50による補正動作を休止させ、前記閾値TH1以上となると補正動作を行わせるとともに、前記最大値および最小値をリセットさせる。
【0035】
ここで、前記閾値TH1は、(最大周波数偏差−最小周波数偏差)より小さく、かつn値変調(nは3以上)である場合に、(最大周波数偏差−最小周波数偏差)×(n−2)/(n−1)よりも大きく、適宜マージンを考慮して選ばれる。本実施の形態では、n=4であり、最大周波数偏差は+1050Hzであり、最小周波数偏差は−1050Hzであるので、2100Hzより小さく、1400Hzより大きく、前記マージンを考慮して、1500Hzに選ばれる。
【0036】
図4の例では、最初のサンプル値P1での周波数偏差は−350Hzであり、それが最大値および最小値に共に登録され、次のサンプル値P2での周波数偏差は+1050Hzであるので、最大値はこの値に更新され、また最大値と最小値との差は1400Hzであり、DCオフセットの補正動作は禁止されている。これに対して、サンプル値P3での周波数偏差は+1400Hzになり、最大値はこの値に更新され、また最大値と最小値との差は1750Hzであり、DCオフセットの補正動作が行われる。その補正動作は、図4(g)で示すように、前記図3のΔfに相当する前記最大値と最小値との平均値を求め、その平均値をサンプル値から減算するもので、サンプル値P3の例では、(1400−350)/2=525Hzを前記1400Hzから減算し、875Hzを補正後のサンプル値P3’とするものである。
【0037】
実際の補正動作は、前記局部発振回路223(または243)の発振周波数を変化させ、入力される周波数偏差のデータを、前記525Hzだけ低くシフトさせるものである。すなわち、前記局部発振回路223(または243)はデジタルVCOから成り、DCオフセット補正回路50は、発振波形の基となるsinテーブルから、波形(振幅レベルを表す)データを読出すタイミングを変化することで、発振周波数を変化させることができ、その読出しタイミングを、現在の発振周波数より前記525Hzだけ低い発振周波数とするタイミングに変更する。
【0038】
この補正動作によって、以降はサンプル値P4〜P9となっていた周波数偏差のデータが、参照符号P4’〜P9’にシフトされ、前記4値FSKシンボル再生回路33での判定結果が、図4(c)となるところ、図4(b)で示すような正しい値で復調することができるようになる。前記サンプル値P3’への補正が適切であると、補正後1サイクル分のデータが入力された時点(P7’)では、最大値と最小値との絶対値が略等しく、補正量(Δf)が0となっている。
【0039】
一方、前記加算器301からの周波数偏差量のデータは、スケルチ回路43に与えられ、ハイパスフィルタ431でノイズ成分が抽出され、絶対値回路432でそのノイズの絶対値が求められ、さらにローパスフィルタ433で平均化されることで、スケルチレベルが求められている。前記補正制御回路52は、前記スケルチレベル(ノイズレベル)が予め定める閾値TH2より大きい場合も、前記DCオフセット補正回路50による局部発振回路223(または243)の発振周波数の調整を禁止させる。これによって、ノイズによる誤った補正を防止している。
【0040】
図5は、DCオフセット補正回路50および補正制御回路51,52の一構成例を示す図である。前記ルート・レイズド・コサインフィルタ32からの24kspsの復調信号は、前記4値FSKシンボル再生回路33と同様に、サンプラ501において、前記4値FSKシンボル再生回路33からの2.4kspsのシンボルレートのクロックでサンプリングされ、引算器502において、後述する同期ワードパターン検出による前記DCオフセットΔfに対応した周波数偏差情報が減算された後、サンプルホールド回路503,504に入力される。サンプルホールド回路503は、リセットタイミングから、逐次入力されるデータをストアデータと比較し、ストアデータより大きいデータが入力されると、ストアデータをその入力値に更新することで、前記最大値を求め、保持している。同様に、サンプルホールド回路504は、リセットタイミングから、逐次入力されるデータをストアデータと比較し、ストアデータより小さいデータが入力されると、ストアデータをその入力値に更新することで、前記最小値を求め、保持している。そして、これら最大値および最小値のデータは加算器505で相互に加算され、割り算器506で1/2分割されて、前記周波数偏差の情報が求められる。その情報は、ノイズ除去のためのローパスフィルタ507を介して変換回路508に入力され、前記局部発振回路223(または243)を構成するデジタルVCOの波形データの読出しタイミングに変換されて前記局部発振回路223(または243)に与えられる。
【0041】
そして、前記補正制御回路51は、前記サンプルホールド回路503にホールドされている最大値から、前記サンプルホールド回路504にホールドされている最小値を減算して、それらの差を求める引算器511と、求められた差を前記1500Hzの閾値TH1と比較する閾値判定部512と、前記割り算器506からの出力を、前記差が前記閾値TH1以上であると許容し、閾値TH1未満であるときには阻止するゲート513とを備えて構成される。同様に、前記補正制御回路52は、前記スケルチ回路43からのスケルチレベルを所定の閾値TH2と比較する閾値判定部521と、前記割り算器506からの出力を、前記スケルチレベルが前記閾値TH2以下であると許容し、閾値TH2より大きい場合は阻止するゲート522とを備えて構成される。
【0042】
このように構成することで、FSK受信機1において、送受信の周波数偏差に起因して生じるDCオフセット成分の補正を、DCオフセット補正回路50が、復調信号の最大値および最小値の中央値から行うにあたって、補正制御回路51を設け、該補正制御回路51は、前記最大値と最小値との差が予め定める閾値TH1未満であるときには、前記DCオフセット補正回路50による補正を休止させるので、たとえば前記4値FSK信号の場合、「00」と「01」、「10」と「11」のように中央値を跨がないような値や、「00」と「10」、「01」と「11」のように、中央値を跨いでも、その中央値からの偏差が不均等な値ではオフセット補正は行われず、「00」と「11」の前記最大値および最小値が得られた場合にだけオフセット補正が行われることになり、多値のFSK信号であっても、周波数偏差を正確に検出でき、適切なオフセット除去を行うことができる。また、前記予め定める閾値TH1以上の信号が得られた時点でオフセット補正を行うので、長時間信号を監視する必要はなく、迅速にオフセット補正を行うことができる。
【0043】
また、前記DCオフセット補正回路50は、オフセット補正を、受信高周波信号から中間周波信号を得る周波数変換器22における局部発振器223と、得られた前記中間周波信号を直交変換する直交変換器24における局部発振器243との何れか一方の発振周波数を制御することで行うので、バンドパスフィルタ224やローパスフィルタ245,246;27,28の特性を変更する必要はなく(通過帯域は同じため)、隣接チャネル信号除去能力を高めることもできる。
【0044】
さらにまた、補正制御回路52は、スケルチ回路43の出力に応答して、ノイズレベルが大きい場合にも、前記DCオフセット補正回路50による補正動作を休止させるので、ノイズによる誤動作を防止することもできる。
【0045】
ここで、前記DCオフセット補正回路50は、オフセット補正を、前述のように受信高周波信号から中間周波信号を得る周波数変換器22における局部発振器223、または得られた前記中間周波信号を直交変換する直交変換器24における局部発振器243の発振周波数を制御することで行っているが、本発明の実施の他の形態として、図6の復調回路61で示すように、前記DCオフセット補正回路50は、ルート・レイズド・コサインフィルタ32からの24kspsの復調信号の出力信号レベルから、前記最大値と最小値との平均値(中央値)を引算器62で減算して、復調信号のレベル自体を直接補正するようにしてもよい。この場合、前記局部発振器223,243の制御は行われない。
【0046】
このようにDCオフセットを復調信号から直接減算することで、周波数偏差の量に拘わらず、速やかにシンボル再生を行うことが可能になる。一方、前述のように局部発振器223,243の発振周波数を制御した場合は、得られた中間周波信号の中心周波数がバンドパスフィルタ224の中心周波数に常に一致しており、或いはローパスフィルタ245,246;27,28の通過帯域に一致しており、信号劣化が少なく、高い感度を得ることができる。
【0047】
また、注目すべきは、本実施の形態では、フレーム同期検出回路である前記同期ワードパターン検出回路34が同期ワードパターンを検出するにあたって、先ず前記送受信の周波数差に起因するDCオフセットΔfの補正が行われることである。図7は、前記同期ワードパターン検出回路34の一構成例を示すブロック図である。この同期ワードパターン検出回路34は、大略的に、受信ワードパターン(前記復調信号)の所定数、たとえば10シンボル期間分のオーバーサンプル値を記憶するメモリ341と、そのオーバーサンプル値の移動平均値を算出する平均値算出部342と、既定の同期ワードパターンにおける前記所定数分の平均値を理想平均値としてストアしているレジスタ343と、前記レジスタ343に記憶されている理想平均値と前記平均値算出部342で求めた移動平均値との差分から、DCオフセットを求める引算器344と、受信ワードパターンの各オーバーサンプル値から前記DCオフセットを減算する引算器345と、前記同期ワードパターンをストアしているメモリ346と、前記引算器345でのDCオフセット補正後の受信ワードパターンと前記メモリ346に記憶されている同期ワードパターンとの相関演算を行う相関演算器347と、予め定められる閾値TH3をストアしているレジスタ348と、前記相関演算器347で求められた相関値と前記レジスタ348に記憶されている閾値TH3とを比較し、閾値TH3よりも大きい場合に、同期ワード候補と認識する比較器349と、前記比較器349で同期ワード候補が認織された場合、前記DCオフセット補正後の受信ワードパターンと前記同期ワードパターンとの各シンボル値を比較し、総てのシンボルの誤差が一定の範囲にある場合に、同期ワードパターンを検出したと判定するシンボル比較器340とを備えて構成される。
【0048】
図8〜図12は、上述のような同期ワードパターン検出回路34の動作を説明するための波形図である。なお、前述の説明では、オーバーサンプルはシンボルクロックの10倍の周波数で行われているとしているが、これらの図では、図面の煩雑化を避けるために、5倍の周波数で示している。前記ルート・レイズド・コサインフィルタ32からの24kspsの受信ワードパターン(前記復調信号)は、メモリ341に入力され、図8において、時刻・・・,t−2,t−1,t0で示すように、オーバーサンプル値が入力される毎に逐次更新されて、最新の10シンボル期間分だけ記憶される。この図8では、オーバーサンプル値を連続する実線で示し、シンボル値P11〜P20を丸印で示している。
【0049】
続いて、平均値算出部342では、メモリ341のストア内容が更新される毎に、その平均値が演算され、図9で示すようなオーバーサンプル値の移動平均値が逐次求められる。その後、レジスタ343に格納されている同期ワードパターンにおける前記10シンボル期間分の平均値が、オフセット演算手段である引算器344において前記平均値算出部342からの移動平均値から減算されることで、DCオフセット(周波数補正量)Δfが求められる。さらに引算器345において、前記メモリ341に格納されている受信ワードパターンの各オーバーサンプル値から前記DCオフセットΔfを減算することで、DCオフセット補正後の受信ワードパターンが得られる。
【0050】
そのDCオフセット補正後の受信ワードパターンは、相関演算器347において、メモリ346に記憶されている同期ワードパターンとの相関演算(畳み込み)が行われ、図10で示すような相関値が求められる。すなわち、同期ワードパターンをai、受信ワードパターンをbiとするとき、相関値Fは、F=Σ[ai*(bi−Δf)](ただし、サンプル数で、i=1,2,・・・,91)である。前記FSKの場合、たとえば80または40msecのフレームデータは、同期バーストを含む同期ワードと、本体データであるトラヒックチャネルとを備えて構成される。前記メモリ346に記憶されている同期ワードパターンは、この同期ワードのパターンである。
【0051】
こうして求められた相関値Fが、候補判定手段である比較器349において、レジスタ348に記憶されている閾値TH3と比較されると、図8〜図10で示す例では、図11で示すように、5サンプル前の時刻t−5において閾値TH3よりも大きくなっており、比較器349は、同期ワード候補が受信されたと判定するとともに、その時刻t−5を暫定のシンボルタイミングと判定する。すなわち、この相関演算(畳み込み)では、受信ワードパターンは、オフセット補正が行われることで、これらの図8〜図11で示すグラフにおけるy軸方向へのずらしが行われ、逐次入力されてくることでx軸方向のずらしが行われることと等価となり、固定の同期ワードパターンに対して、マッチングが判定されることになる。
【0052】
そして、前記候補判定をトリガとして、最終判定手段であるシンボル比較器340は、シンボル値P11〜P20について、図12で示すように、前記DCオフセットΔfの補正を行い、補正後のシンボル値P11’〜P20’に対して、前記メモリ346に記憶されている同期ワードパターンにおける対応するシンボル値と比較を行い、総てのシンボルの誤差が一定の範囲にある場合に、最終的に同期ワードパターンを検出したと判定する。すなわち、同期ワードパターンのシンボル値をAk、受信ワードパターンのシンボル値をBkとするとき、誤差Eは、E=Σ|Ak−(Bk−Δf)|(ただし、kはサンプル数で、k=1,2,・・・,10)であり、その誤差Eが所定の閾値TH4以内である場合に、最終的な同期判定を行う。
【0053】
その同期ワードパターンの検出判定で、シンボル比較器340は、4値FSKシンボル再生回路33に、後述するように、同期ワードパターンの検出タイミングでリセット信号を与え、内部のシンボルクロックのタイミング調整を行う。また、シンボル比較器340は、上述のように判定に使用していた暫定のDCオフセットΔfを真値として、それに対応する値を、前記4値FSKシンボル再生回路33およびDCオフセット補正回路50に周波数偏差情報として与え、通信終了まで、後述するようにしてDCオフセット補正を行わせる。さらに、シンボル比較器340は、同期ワードパターンが検出されると、前記4値FSKシンボル再生回路33およびフレーム生成回路35に、同期ワードパターンが検出されている、すなわち正常に受信が行われていることを通知し、前記4値FSKシンボル再生回路33でのシンボル再生およびフレーム生成回路35でのフレーム構成、すなわち音声出力を許可する。一方、比較器349で相関値が閾値TH3以下であるとき、およびシンボル比較器340で同期ワードパターンの検出とならなかったときは、前記のような制御出力は行われない。
【0054】
このように構成することで、相関演算器347での相関演算(畳み込み)前に、引算器344においてDCオフセットΔfが除去されているので、シンボル比較器340で同期ワード検出と判定する閾値を厳しくすることができ、しかも相関演算(畳み込み)結果で同期ワード検出を判定するのではなく、個々のシンボル点総てについて、誤差が一定の範囲にあることを最終の検出条件とするので、結果的に、フレーム同期の確立を速やかに、かつ高精度に行うことができる。
【0055】
さらにまた、注目すべきは、本実施の形態では、前記4値FSKシンボル再生回路33において、前記図4(a)におけるサンプル値(周波数偏差)P1〜P9,P3’〜P9’を得るシンボルクロックの補正が行われることである。図13は、その4値FSKシンボル再生回路33の一構成例を示すブロック図である。この4値FSKシンボル再生回路33では、前記ルート・レイズド・コサインフィルタ32からのシンボルレートの10倍にオーバーサンプルされた復調信号は、引算器330に入力され、前記同期ワードパターン検出回路34のシンボル比較器340で同期ワードパターンを検出することで得られたDCオフセットΔfに対応した周波数偏差情報が減算された後、シフトレジスタ331−1に入力される。シフトレジスタ331−1には、2段のシフトレジスタ331−2,331−3が縦続接続されており、新たなサンプルデータが入力されると、順次シフトされてゆく。したがって、前記オーバーサンプルの周期で、最も新しいデータがシフトレジスタ331−1に、古いデータがシフトレジスタ331−3に、3サンプル分保持される。
【0056】
なお、前記引算器330での周波数偏差情報の減算は、同期ワードパターン検出回路34で同期ワードパターンが検出されている、すなわちフレームを受信し、正常に受信が行われている場合に限られ、そうでない場合は前記DCオフセット補正回路50による局部発振器223,243の発振周波数の制御または引算器62でのDCオフセット成分の減算によって補償が行われており、同期ワードパターンが検出された際は、前記シンボル比較器340はこのDCオフセットΔfを出力し、検出されない間はΔf=0とする。これによって、同期ワードパターン検出回路34で同期ワードパターンが検出されると、その際に検出されたDCオフセットΔfによる補正が優先され、素早く、前記DCオフセットΔfの補償を行うことができる。
【0057】
ここで同様に、前記DCオフセット補正回路50において、引算器502で、このDCオフセットΔfに対応した周波数偏差情報の減算が行われることで、前記同期ワードパターン検出回路34による同期ワードパターンの検出で、前述のように速やかに4値FSKシンボル再生回路33の引算器330で周波数偏差情報が減算されてDCオフセットが補償されたのと同様の条件で、該DCオフセット補正回路50内での補正動作を行わせることができる。すなわち、前述のように同期ワードパターン検出回路34での同期ワードパターンの検出によるDCオフセット補正が4値FSKシンボル再生回路33で優先して行われ、その補正と該DCオフセット補正回路50での補正とが重複しないように、該DCオフセット補正回路50では、前記引算器502で周波数偏差情報の減算が行われる。同期ワードパターンが検出されていない間は、前記シンボル比較器340は、前記周波数偏差情報を0とするので、該DCオフセット補正回路50での局部発振器223,243等への補正が、フルに機能することになる。
【0058】
なお、前記同期ワードパターンが検出された通信(呼)は、最初の同期ワードで得られた前記周波数偏差情報(DCオフセット)を使用して、その通信(呼)が終了するまで、その周波数偏差情報(DCオフセット)を使用し続ける。また、前記同期ワードパターン検出回路34が同期ワードパターンを検出すると、以後は、4値FSKシンボル再生回路33における通常のシンボル再生で同期ワードを検出できるので、前記同期ワードパターン検出回路34は、その通信(呼)が終了するまで、同期ワードパターンの検出処理を行わない。このため、周波数偏差を持ちながら受信を行っているので、前記DCオフセット補正回路50による補正動作に比べて、前記バンドパスフィルタ224やローパスフィルタ245,246;27,28での相性は悪くなるものの、同期ワードパターンが検出できているので、前記4値FSKシンボル再生回路33には復調に問題のないレベルの信号が入力されており、再生されたシンボルデータには誤りは無く、問題はない。
【0059】
図13に戻って、前記各シフトレジスタ331−1〜3のストア内容は、ゲート回路332によって、タイマ333で発生された前記シンボルクロックのタイミングで、シフトレジスタ334−1〜3にそれぞれ取込まれる。したがって、各シフトレジスタ334−2,334−1,334−3には、図14で示すような、理想のシンボル点P付近のサンプル点T2およびその前後のサンプル点T1,T3でのサンプリング値がストアされる。そして、サンプル点T2でのサンプリング値がシンボル判定部335に入力され、そのサンプル点T2でのサンプリング値から推定される実際のシンボル点Pのシンボル値として、前記「00」,「01」,「10」,「11」の何れが最も確からしいか判定され、その判定結果が前記2ビット、2.4kspsの信号としてフレーム生成回路35へ出力される。
【0060】
また、シンボル判定部335からは、その判定結果のシンボル値に対応した理想の振幅レベルが出力され、引算器336−1〜3において、前記各シフトレジスタ334−1〜3でのストア内容から減算される。その減算結果、すなわち前記理想の振幅レベルからの誤差(差分値)の大きさV1〜V3の内、シフトレジスタ334−1,3、すなわちサンプル点T1,T3でのサンプリング値での誤差V1,V3の大きさがセレクタ337に入力されて、どちらの誤差が大きいか判断され、誤差の小さい方、すなわち図14ではサンプル点T3を、サンプル点T2を移動させるべき方向のデータ(指標)として、タイミング補正回路338へ出力される。
【0061】
一方、前記タイミング補正回路338には、前記引算器336−2での誤差の大きさV2が、補正量のデータとして入力されており、このタイミング補正回路338は、その補正量のデータに対応したカウント値に、補正方向のデータとして符号を組合わせて、タイミング制御信号として、ループフィルタ339を介して前記タイマ333へ出力する。前記ループフィルタ339は、IIRフィルタなどのローパスフィルタから構成され、前記シンボルクロックが、時定数が大きくなる程安定となり、小さくなる程追従性が良くなる。
【0062】
前記タイマ333は、デジタルのVCOなどの自走式のカウンタから成り、その発振周波数は、シンボル周波数に設定されており、シンボル周期(シンボルタイミング)となった時点で、桁溢れ分を除き、リセットしてカウント動作を再開する。そして、シンボルタイミングは、そのデジタルVCOの位相が0°を通過したタイミングとなる。たとえば、VCOの位相の0〜360°(1シンボル周期)をカウンタの0〜30000のカウント値に対応させると、タイマ333は、1つのオーバーサンプル点T毎に3000を加算してゆくことで、24kspsのオーバーサンプルのデータから、2.4kspsのシンボルレートのシンボル値をサンプリング可能なシンボルクロックを再生することができる。
【0063】
そして、タイマ333は、前記図14の場合、次回のシンボルクロックを、補正方向として、サンプル点T3方向、すなわち進ませる方向に、補正量として前記サンプル点T2での誤差V2に対応して、たとえば500カウントだけ進ませるように、前記デジタルVCOの位相が0°でのカウント値を500に初期設定する。すると、その500カウントする間だけ、シンボルタイミングが速められ、次回のサンプル点T2が、実際のシンボル点Pに近付くことになる。具体的には、カウント動作の繰返しの中で、前記500のカウント値を補正するとタイマ333は、30500でオーバーフローし、この時リセットされて、桁溢れ分を除いた500に、今回の補正値500が加算されてカウント動作を再開し、次は31000でオーバーフローする。こうして、補正値の合計が3000になると、1サンプル分、サンプリングタイミングが速められることになる。
【0064】
図15には、前記タイマ333のカウント動作の例として、初期値に負の値を設定し、シンボルタイミングを遅らせる場合を示す。このタイマ333の最大値を大きくすれば分解能が高くなり、オーバーサンプルのサンプリングレートを上げれば補正精度が向上する。なお、前記サンプル点T2での誤差V2が所定値より小さい場合は、上述のようなタイミング補正を行わないような不感帯を設けることで、安定性を向上することができる。また、このタイマ333は、前記同期ワードパターン検出回路34のシンボル比較器340からの前記リセット信号によって、同期ワードパターンの検出タイミングで、強制的に0リセットされ、カウント動作を再開する。
【0065】
以上のように、本実施の形態の4値FSKシンボル再生回路33は、復調信号を予め定めるシンボル点でサンプリングし、得られたシンボルデータの振幅値から復調データを再生するにあたって、前記復調信号をシンボルクロックよりも高い周波数でオーバーサンプリングしたシンボルデータの内、前記シンボル点Pに近いサンプル点T2と、その前後のサンプル点T1,T3との3点のシンボルデータについて、演算手段を構成するシフトレジスタ331−1〜3、ゲート回路332、シフトレジスタ334−1〜3、シンボル判定部335および引算器336−1〜3によって、シンボル点Pにて得られるべき理想の振幅レベルとの差分値V1〜V3を求め、前記前後のサンプル点T1,T3の内、前記差分値V1,V3が小さい方の測定点を選択手段であるセレクタ337で選択し、タイミング補正回路338が、前記セレクタ337で選択されたサンプルT3側に、前記サンプル点T2における差分値V2に対応した時間だけ、自走する前記タイマ333の次回のシンボル点のサンプリングタイミングを移動させる。
【0066】
したがって、たとえば「00」,「01」,「10」,「11」の4値の変調波の場合、「00」と「01」、或いは「10」と「11」のように、中央値を跨がないような遷移や、「00」と「10」、「01」と「11」のように、中央値を跨いでも、その中央値からの偏差が不均等な遷移の場合にも、サンプリングタイミングは、最大でオーバーサンプリングの周期ずつでずれが修正されてゆく。また、サンプリングタイミングに、180°近くの大きなずれが生じていても、タイミングを修正すべき方向は検知できる。こうして、多値変調波から、安定したシンボルクロックを再生することができる。また、アイパターンの開口率に依存しないため、ロールオフ率の変更に対して対応が容易である。さらにまた、タイミング演算は、シンボル点P付近のサンプル点T2と、その前後のサンプル点T1,T3との3点程度で行われるので、演算量を削減することもできる。このようなシンボルクロックの再生方法は、周波数変調に限らず、位相変調などのアイパターンが存在する種々の変調方式に適用することができる。
【0067】
また、自走する前記タイマ333およびループフィルタ339は、前記同期ワードパターン検出回路34での同期ワードパターンの検出タイミングで、強制的にリセットされるので、本体データ(トラヒックチャンネル)の先頭から、精度の高いシンボルクロックを再生することができる。さらにまた、引算器330において、復調信号から、DCオフセット分の補正を行うので、サンプル点T2で得られるシンボルデータを、前記理想の振幅レベルに近付けることができ、より安定したクロックを再生することができる。
【図面の簡単な説明】
【0068】
【図1】本発明の実施の一形態に係るFSK受信機の電気的構成を示すブロック図である。
【図2】前記FSK受信機における復調回路の一構成例を示すブロック図である。
【図3】4値FSKにおいて、送受信周波数ずれによって受信信号に発生するDCオフセットを説明するための波形図である。
【図4】本発明の実施の一形態に係るDCオフセット補正動作および補正制御動作を説明するための図である。
【図5】前記図4で示す動作を行うDCオフセット補正回路および補正制御回路の一構成例を示す図である。
【図6】本発明の実施の他の形態に係るFSK受信機における復調回路の一構成例を示すブロック図である。
【図7】同期ワードパターン検出回路の一構成例を示すブロック図である。
【図8】前記同期ワードパターン検出回路の動作を説明するための波形図である。
【図9】前記同期ワードパターン検出回路の動作を説明するための波形図である。
【図10】前記同期ワードパターン検出回路の動作を説明するための波形図である。
【図11】前記同期ワードパターン検出回路の動作を説明するための波形図である。
【図12】前記同期ワードパターン検出回路の動作を説明するための波形図である。
【図13】4値FSKシンボル再生回路の一構成例を示すブロック図である。
【図14】前記4値FSKシンボル再生回路の動作を説明するための波形図である。
【図15】前記4値FSKシンボル再生回路におけるタイマのカウント動作を説明するための波形図である。
【符号の説明】
【0069】
1 FSK受信機
3 アンテナ
4,8,12,224 バンドパスフィルタ
5,9,13,40 アンプ
6,10;222,241,242 混合器
7,11;223,243 局部発振回路
14 アナログ/デジタル変換器
15,17,39 デジタル/アナログ変換器
16 スピーカ
21,61 復調回路
22 周波数変換器
221 ハイパスフィルタ
23,25,26,37,45 コンバータ
24 直交変換器
244 移相器
245,246,27,28,38,507 ローパスフィルタ
29 位相検出器
30 周波数検出器
301 加算器
302 遅延器
31 逆Sincフィルタ
32 ルート・レイズド・コサインフィルタ
33 4値FSKシンボル再生回路
330,336−1〜3,502 引算器
331−1〜3,334−1〜3 シフトレジスタ
332 ゲート回路
333 タイマ
335 シンボル判定部
337 セレクタ
338 タイミング補正回路
339 ループフィルタ
34 同期ワードパターン検出回路
340 シンボル比較器
341,346 メモリ
342 平均値算出部
343,348 レジスタ
344,345 引算器
347 相関演算器
349 比較器
35 フレーム生成回路
36 音声復調部
41 スピーカ
42 AGC演算回路
46 RSSI回路
50 DCオフセット補正回路
501 サンプラ
503,504 サンプルホールド回路
505 加算器
506 割り算器
508 変換回路
51,52 補正制御回路
511,62 引算器
512,521 閾値判定部
513,522 ゲート

【特許請求の範囲】
【請求項1】
補正手段が、復調信号の最大値および最小値の中央値からDCオフセット成分の補正を行うようにしたFSK受信機において、
前記最大値と最小値との差が予め定める閾値TH1未満であるときには、前記補正手段による補正動作を休止させる第1の補正制御手段を含むことを特徴とするFSK受信機。
【請求項2】
前記閾値TH1は、n値変調(nは3以上)である場合に、(最大周波数偏差−最小周波数偏差)×(n−2)/(n−1)よりも大きく選ばれることを特徴とする請求項1記載のFSK受信機。
【請求項3】
前記補正手段は、受信高周波信号から中間周波信号を得る周波数変換器における局部発振器の周波数を制御することで、前記DCオフセット成分の補正を行うことを特徴とする請求項1または2記載のFSK受信機。
【請求項4】
前記補正手段は、受信高周波信号を周波数変換して得られた中間周波信号を直交変換する直交変換器における局部発振器の周波数を制御することで、前記DCオフセット成分の補正を行うことを特徴とする請求項1または2記載のFSK受信機。
【請求項5】
前記補正手段は、前記復調信号のレベルをシフトすることで、前記DCオフセット成分の補正を行うことを特徴とする請求項1または2記載のFSK受信機。
【請求項6】
ノイズレベルを検出するスケルチ回路と、
前記スケルチ回路で検出されたノイズレベルが予め定める閾値TH2より大きい場合にも、前記補正手段による補正動作を休止させる第2の補正制御手段とをさらに備えることを特徴とする請求項1〜5のいずれか1項に記載のFSK受信機。
【請求項7】
アンテナと、
前記アンテナで受信された信号を直交変換する直交変換器と、
前記直交変換器で得られたI成分、Q成分を直交検波し、前記復調信号を得る検波回路とを備えて構成されることを特徴とする請求項1〜6のいずれか1項に記載のFSK受信機。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate

【図7】
image rotate

【図8】
image rotate

【図9】
image rotate

【図10】
image rotate

【図11】
image rotate

【図12】
image rotate

【図13】
image rotate

【図14】
image rotate

【図15】
image rotate


【公開番号】特開2010−41138(P2010−41138A)
【公開日】平成22年2月18日(2010.2.18)
【国際特許分類】
【出願番号】特願2008−198883(P2008−198883)
【出願日】平成20年7月31日(2008.7.31)
【出願人】(000100746)アイコム株式会社 (273)
【Fターム(参考)】