説明

Fターム[4G002AA02]の内容

鉄化合物 (3,304) | 構成元素 (1,192) | 酸素含有 (1,163) | Fe、Oのみからなるもの (260)

Fターム[4G002AA02]の下位に属するFターム

Fターム[4G002AA02]に分類される特許

1 - 20 / 56


【課題】複雑で設計の自由度が高く、粒子構造に応じた機能を発現可能な階層構造の粒子集合体、及び、該粒子集合体を簡便かつ安価な方法で製造可能とする階層構造の粒子集合体の製造方法を提供する。
【解決手段】本発明の階層構造の粒子集合体は、基板と、該基板上に形成したテンプレートと、該テンプレート上に形成されたナノ構造体とを備える階層構造の粒子集合体であり、前記テンプレートは、球状粒子が規則的に配列された球状粒子層が前記基板側から前記ナノ構造体側に向けて少なくとも2層積層されて形成され、前記球状粒子の粒径サイズは、前記球状粒子層間で異なり、前記基板側から前記ナノ構造体側に向けて小さく、前記ナノ構造体は、前記テンプレートの最表層を形成する前記球状粒子層における個々の前記球状粒子上に配され、前記球状粒子の粒径サイズよりも小さな粒径のナノ粒子で形成されることを特徴とする。 (もっと読む)


【課題】高温場を利用せずとも、簡易な構成で、酸素欠乏型マグネタイトを容易に製造することが可能となる。
【解決手段】酸素欠乏型マグネタイト製造装置100は、受光した光10を内部118に透過させる受光面部112aを有する反応容器110と、反応容器110に収容されるマグネタイト120と、反応容器110に収容される光触媒130と、反応容器110に収容され、還元剤としての機能を有する気体である還元ガス140と、を備え、マグネタイト120は、光触媒130によって還元ガス140との反応が促進されて、酸素欠乏型マグネタイト150に変換される。 (もっと読む)


【課題】 磁気ヒステリシス曲線の角型比を大きくすることによって磁気ヒステリシス損失を大きくすることで優れた発熱効率を示す、癌焼灼治療用強磁性酸化鉄粒子の製造方法を提供すること。
【解決手段】 本発明の癌焼灼治療用強磁性酸化鉄粒子の製造方法は、3価の鉄化合物の水溶液にアルカリを混合する(但し分子内にアミノ基を有する化合物は混合しない)ことで得られる沈殿物を水熱反応に付することにより、長径が30〜300nm、短径に対する長径の比が1〜10である板状の形状を有するゲータイト粒子を得た後、ゲータイトを酸化鉄に変換することを特徴とする。 (もっと読む)


【課題】回収と繰り返し使用性能に優れ、触媒、抗ウイルス剤、又は坑菌剤として使用できる、環境にやさしい多孔体・サテライトナノ粒子複合体及びその製造方法を提供する。
【解決手段】多孔体・サテライトナノ粒子複合体は、多孔体10と、多孔体の表面に第1末端21が結合し、第2末端に官能基22を含む分子20と、官能基に結合したサテライトナノ粒子30とを含む。製造方法は、(a)第1溶液に多孔体前駆体を導入して、第2溶液を製造する段階と、(b)第2溶液に、第2末端に官能基を含む分子を導入して、多孔体の外面に分子の第1末端を結合することにより、分子が結合した複合体を含有する第3溶液を製造する段階と、(c)第3溶液にサテライトナノ粒子シードを導入して、分子の第2末端の官能基にサテライトナノ粒子シードを結合する段階と、(d)サテライトナノ粒子シードを成長させる段階を含む。 (もっと読む)


【課題】鉄鋼スラグを原料として鉄鋼スラグを構成するCa、Fe、Mnを分離し、それぞれ有用成分として回収する方法を提供すること。
【解決手段】 本発明の石膏の2水和物およびFe、Mnの酸化物または水酸化物の製造方法は、1)鉄鋼スラグを硫酸に溶解させる第1のステップと、2)鉄鋼スラグを溶解させた硫酸から石膏およびシリカを回収する第2のステップと、3)石膏およびシリカを回収した硫酸中の水分を蒸発させ、得られる粉末を焙焼する第3のステップと、4)その焙焼物を水に溶解させ、水に不溶のFe酸化物を回収する第4のステップと、5)第4のステップの焙焼物を溶解させた水溶液中の水分を蒸発させ、得られる粉末を焙焼する第5のステップと、6)その焙焼物を水に溶解させ、水に不溶のMn酸化物を回収する第6のステップを有する。 (もっと読む)


【課題】銅を含有する必要のない鉄粒子で構成され且つ有機ハロゲン化合物を十分に分解する能力を有する分解剤及びその製造方法の提供。
【解決手段】鉄及び酸化鉄からなる鉄粒子を含む有機ハロゲン化合物の分解剤であって、鉄粒子が、下記のエッチング条件:
チャンバー内の真空度:2.0×10−2Pa
イオンガンの加速電圧:10kV
エミッション電流:10mA
エッチング時間:14秒
で2回のイオンビームエッチングを行ったときの鉄粒子の最表面層における金属鉄の含有量として15質量%以上の値を有する、有機ハロゲン化合物の分解剤。 (もっと読む)


【課題】オリビン型リン酸鉄リチウムの製造原料として有用な酸化鉄粒子を提供すること。
【解決手段】本発明の酸化鉄粒子は、スピネル構造を有し、累積体積50容量%における体積累積粒径D50が5〜100nmであり、粒子表面のFeO存在率が70%以上である。また、この酸化鉄粒子は、結晶子径が7〜50nmであることが好ましい。累積体積90容量%における体積累積粒径D90と、累積体積50容量%における体積累積粒径D50との比D90/D50が1.30以下であることも好ましい。 (もっと読む)


【課題】空気浄化材料として利用した場合に空気中に含まれる揮発性有機化合物(例えばアセトアルデヒド)等の反応分子に対して十分に高度な浄化性能を有することが可能な酸化鉄多孔体を提供すること。
【解決手段】酸化鉄の一次粒子が凝集した凝集体からなり、
前記一次粒子の平均粒子径が2〜8nmであり、
前記凝集体の細孔の中心細孔直径が2〜10nmであり、
前記酸化鉄が、X線回折パターンにおいて結晶の(110)面に由来するピークと結晶の(300)面に由来するピークの2本のピークを示す2ラインフェリハイドライト相を有しており、
前記酸化鉄の全結晶相に対する前記2ラインフェリハイドライト相の含有比率が40質量%以上であり、且つ、
ケイ素、アルミニウム、スズ、亜鉛及びチタンの酸化物からなる不純物の総量が0.1質量%以下であること、
を特徴とする酸化鉄多孔体。 (もっと読む)


【課題】凝集が進行しにくく分散性が優れる球状ナノ粒子の製法を提供する。
【解決手段】液相中に1〜1000nmの大きさの原料粒子あるいは金属酸化物粒子を分散させ、この液相中の粒子に1レーザーパルスあたり0.5J/cm以下の弱いレーザー光を照射して、原料粒子を一旦溶融かつ融合させ、その後液相中で急冷することにより10〜1000nmの大きさの球状ナノ粒子を製造する、あるいは金属酸化物粒子に還元反応を起こさせて、これにより金属球状ナノ粒子若しくは還元球状ナノ粒子またはこれらの複合構造の粒子を生成させる。 (もっと読む)


【課題】先行技術の方法の問題を克服する酸化鉄の製造方法を提供することを課題とする。
【解決手段】鉄のグラム原子当たり0.03から1.5モルの酸、水/鉄の重量比が1から20、および酸素、酸素を含む混合物、過酸化水素、有機過酸化物およびヒドロ過酸化物から選択された試薬を用いて、カルボン酸第一鉄から第二鉄塩への酸化により、微小球状粒子または屑または切り屑形状の金属鉄と、空気中で200から350℃に加熱することにより、二酸化炭素と水に分解することができ、第1のカルボキシル基に関してpKaが0.5から6のモノまたはポリカルボン酸の攪拌された水溶液との反応により、高純度酸化鉄を製造する。 (もっと読む)


【課題】本発明は、ナノメータサイズで、球形を有し、粒径を揃えることができることを目的とする。
【解決手段】本発明による球形フェライトナノ粒子及びその製造方法は、平均粒径10nm以下のフェライトの種粒子(400)を分散剤(401)によって分散させ、前記分散剤(401)で分散させた種粒子(400)と二糖類(407)とアルカリ(406)と酸化剤(407)と二価鉄塩(411)を含有した水溶液中で粒子を成長させて球形フェライトナノ粒子(415)を得る方法と構成である。 (もっと読む)


【課題】極性有機溶媒に対しても非極性有機溶媒に対しても分散性に優れるナノ粒子体を提供する。
【解決手段】金属又は金属酸化物のナノ粒子に、下記化学式(1)
【化1】


(ただし、R1は炭素数1〜3の直鎖又は分岐鎖の飽和又は不飽和の炭化水素基、Rは炭素数10〜16のアルキル基であり、n=8〜16の整数、m+k=3であり且つm=1又は2、k=1又は2である。)
で示されるリン酸系の界面活性剤で表面を被覆するもので、前記金属又は金属酸化物のナノ粒子が、銀、酸化チタン又は酸化鉄のナノ粒子であるもので、極性有機溶媒への親和性を有する親水基と非極性有機溶媒への親和性を有する疎水基とを粒子表面に有するナノ粒子体とすること。 (もっと読む)


【課題】溶媒分散性の高い、基板等への固定化が容易なシリカ被覆ナノ粒子を提供する。
【解決手段】シリカ被覆ナノ粒子は、ナノ粒子からなるコアと、前記コアの周囲に前記コアを被覆するように設けられた珪素化合物からなるシェルと、前記シェルの周囲に付着した炭素数7以上の第1のシランカップリング剤と、を有し、前記第1のシランカップリング剤は、一端は前記シェル中のSi元素と結合し、他端は反応性官能基を具備することを特徴とする。
(もっと読む)


【課題】粒径が10nm以下、粒径バラツキが15%以下、且つ安価な金属ナノ粒子の化学的製造方法を提供する。さらに、上記の金属ナノ粒子を用いた直径や本数密度の制御されたCNT構造体及びこのCNT構造体を用いた電子デバイスを提供する。
【解決手段】金属塩から金属前駆体溶液を形成する工程(A)と、前記金属前駆体溶液から金属前駆体を抽出する工程(B)と、前記金属前駆体、界面活性体、溶媒を混合させ、前記溶媒の沸点以下の温度において反応させる工程(C)と、前記工程(C)の混合溶液から金属含有ナノ粒子を析出させる工程(D)を含み、前記工程(C)において、前記金属前駆体と界面活性体のモル濃度比が1以下であることを特徴とする金属含有ナノ粒子の製法。 (もっと読む)


【課題】多孔体の細孔を介して微細でサイズの揃ったファイバー状構造体を煩雑な工程を経ることなく高スループットで作製可能な方法を提供する。
【解決手段】固化可能な液体を多孔体の細孔を介して、それとはまじりあわないもう一方の溶液中に押し出し、これを固化することで、多孔体の細孔サイズに対応した微細な直径を有するファイバー状構造体を連続的に形成することを特徴とするファイバー状構造体の製造方法、およびその方法により製造されたファイバー状構造体。 (もっと読む)


【課題】 膜厚の制御が容易で、均一な厚さでマグネタイトが被覆された鉄粉末を得ることができる方法を提案する。
【解決手段】 鉄粉末の表面にマグネタイトを被覆する方法において、鉄ペンタカルボニルを含む反応液中に鉄粉末を入れ、酸化雰囲気中で加熱する工程を有することを特徴とする。または鉄ペンタカルボニルを含む反応液を還元雰囲気中で加熱して、鉄粒子を析出させる工程と、鉄粒子を析出させた前記反応液を酸化雰囲気中で加熱して、析出させた前記鉄粒子にマグネタイトを被覆する工程と、を有することを特徴とする。 (もっと読む)


【課題】本発明は、水との親和性に優れた酸化物微粒子及び当該酸化物粒子を含む分散体を提供することにある。
【解決手段】本発明は、下記条件で特定される酸化アンチモン、酸化銅、酸化鉄、酸化バナジウム、酸化コバルト、酸化ニッケル、酸化ビスマス、酸化ニオブ、酸化タングステン及び酸化モリブデンからなる群から選ばれる少なくとも一種である酸化物(「特定酸化物」と称する)粒子であって、一時間後の水溶媒中での酸化物粒子の沈降度(Sh)と、一週間後の水溶媒中で沈降度(Sw)が0.8≦Sh≦1かつ0.8≦Sw/Sh≦1であることを特徴とする酸化物粒子である。 (もっと読む)


【課題】
金属酸化物を経済的であり大量に生産する新規な製造方法を提供する。
【解決手段】
a)溶媒に金属ハロゲン化物を溶解する段階、b)水または塩基性の強い金属水酸化物を添加して反応させる段階、c)前記反応溶液に塩基性化合物を添加した後、加温して金属酸化物を形成する段階、d)過量の水または金属水酸化物を投入して加温させ、反応を停止させる段階、及びe)分離及び洗浄して金属酸化物を収得する段階;とを含む金属酸化物の製造方法を提供する。
(もっと読む)


【課題】噴霧焙焼法でも色鮮やかな赤色顔料用の酸化鉄を得ることができる塩化鉄溶液とその酸化鉄の製造方法を提案する。
【解決手段】溶質中のFe含有量が酸化鉄(Fe)に換算して99.0mass%以上である塩化第一鉄溶液を、pH6以下で酸化して含水酸化鉄(FeOOH)またはマグネタイト(Fe)を生成させ、その含水酸化鉄またはマグネタイトを洗浄・脱水したのち塩酸に溶解することを特徴とする塩化鉄溶液の製造方法。 (もっと読む)


【課題】砒素、フッ素といった環境負荷物質を含む溶液から砒素、フッ素、鉛、セレンを回収する回収剤を提供する。
【解決手段】10μm以上、100μm以下の粒径を有し、BET3点法によって測定される比表面積が50m/g以上ある多孔質鉄酸化物を当該環境負荷物質を含む溶液に投入したり、当該多孔質鉄酸化物を充填したカラムに当該環境負荷物質を含む溶液を通過させて、当該環境負荷物質を含む溶液中の環境負荷物質をする。 (もっと読む)


1 - 20 / 56