説明

Fターム[4G146AD26]の内容

炭素・炭素化合物 (72,636) | 炭素、炭素化合物−構造、性質、用途 (8,971) | 機械的性質、用途に関する(高密度等) (465)

Fターム[4G146AD26]に分類される特許

141 - 160 / 465


【課題】CNTを水に短時間で高濃度に分散する分散剤を提供する。
【解決手段】(1)ジアリルアミン系カチオン性ポリマー(2)アニオン性界面活性剤、(3)ノニオン性界面活性剤からなる分散剤により短時間で高濃度に分散できる。 (もっと読む)


本明細書において開示されることは、カーボンナノチューブ、CNTを粒体に供給する方法であり、CNTは、CNTの絡み合った凝集体の粉体の形で供給され、絡み合った凝集体の粉体は、投与チャンバ(16、18)に供給され、圧力パルスは、投与チャンバ(16、18)に適用されて、前記圧力および添付の剪断力によって凝集体が少なくとも部分的に崩壊されるように、投与チャンバの出口からCNTを排出し、CNTは、前記粒体の中に供給され、前記流体内に前記CNTを分散させ、かつ複合材料を形成する。
(もっと読む)


本発明は、新規なポリマー官能基化カーボンナノチューブを記載する。これは、カーボンナノチューブ、カーボンナノチューブの外側表面に吸着されたアミノ基を含有する第1ポリマーおよび第1ポリマーに共有結合した第2ポリマーを含む。第2ポリマーと第1ポリマーとの間の結合は、第1ポリマーからのアミノ基と、アミノ基について反応性である第2ポリマーからの基との反応により形成される。また、本発明は、カーボンナノチューブを、アミノ基を含む第1ポリマーの水溶液中に供給し、次いで、アミノ基ついて反応性である基を含む第2ポリマーの溶液を添加する、その製造方法に更に関する。また、本発明は、分散体、ポリマーおよび表面被覆物におけるカーボンナノチューブの使用に関する。
(もっと読む)


【課題】カーボンナノファイバーが均一に分散された、炭素繊維複合非金属材料の製造方法を提供することにある。
【解決手段】炭素繊維複合非金属材料は、熱硬化性樹脂30と、熱硬化性樹脂30に分散されたカーボンナノファイバー40と、熱硬化性樹脂30にカーボンナノファイバー40の分散を促進させる分散用粒子50と、を含む炭素繊維複合材料の熱硬化性樹脂30を非金属のマトリクス材料と置換してなる。 (もっと読む)


種々の形態において、剥離したカーボンナノチューブを本明細書の開示に記載する。カーボンナノチューブは、ポリマーまたは液体溶液のような媒体に分散しない場合でも、その剥離した状態を維持している。剥離したカーボンナノチューブを製造する方法には、ナノ結晶性材料を含む溶液にカーボンナノチューブを懸濁し、溶液から剥離したカーボンナノチューブを沈殿させ、ついで、剥離したカーボンナノチューブを単離することが含まれる。ナノ結晶性材料には、ナノロッド、ヒドロキシアパタイトおよび種々のヒドロキシアパタイト誘導体が含まれ得る。幾つかの形態において、剥離したカーボンナノチューブを製造する方法には、酸中のカーボンナノチューブの溶液を調製し、該溶液をフィルターを通して濾過して該フィルター上に剥離したカーボンナノチューブを収集することが含まれる。幾つかの形態において、酸中のカーボンナノチューブの濃度は、浸透閾値未満である。他の種々の形態において、剥離したカーボンナノチューブを含むエネルギー保存デバイスおよびポリマーコンポジットを本明細書に記載する。エネルギー保存デバイスは、少なくとも2の電極および該少なくとも2の電極と接触する電解質を含むバッテリーとし得る。エネルギー保存デバイス中の電極の少なくとも1は、有利には、剥離したカーボンナノチューブを含む。ポリマーコンポジットは、剥離したカーボンナノチューブとポリマー材料とを混合することによって調製する。ポリマー材料中で混合した後に、カーボンナノチューブはその剥離した状態を維持している。
(もっと読む)


巻き取り可能な長さの基材が通過できる大きさに形成された基材入口を有する少なくとも1つのカーボン・ナノチューブ成長ゾーンを備えた装置。装置は、カーボン・ナノチューブ成長ゾーンと熱的に連結した少なくとも1つの加熱器も備える。装置は、カーボン・ナノチューブ成長ゾーンと流体的に連結した少なくとも1つの供給ガス流入口を備える。装置は、運転中、大気に開放されている。 (もっと読む)


【課題】 非晶質炭素被覆部材において、基材をArイオンでエッチングした後に非晶質炭素膜を基材上に被覆する方法ではエッチング効果が低く、中間層を基材と非晶質炭素膜の間に形成する方法でも、機械部品や、切削工具、金型に対して実用可能な密着性が得られないという問題を有していた。
【解決手段】 基材に負のバイアス電圧を印加することにより、基材表面に周期律表第IIIa、IVa、Va、VIa、IIIb、IVb族元素から選択される1種以上の元素イオン、あるいは、該元素イオンとKr、Xe、CH4、C2H2、C2H4、C6H6、CF4から選択される1種以上のガスを少なくとも含む雰囲気ガスによるガスイオンを複数組み合わせて照射した後、基材上に非晶質炭素膜を被覆する。 (もっと読む)


【課題】マグネシウムに炭素物質を良好に分散させたMg系複合材料、及びその製造方法の提供を課題とする。
【解決手段】MgまたはMg合金原料と、炭素系原料とを混合体とし、これを加熱してMg系複合材料とする工程において、該炭素系原料として、少なくとも表面に酸素含有化合物を有する炭素系原料を用いることを特徴とするMg系複合材料の製造方法により、上記課題が解決される。前記炭素が炭素繊維またはカーボンナノチューブであることが好ましい。 (もっと読む)


本発明は、カーボンナノチューブ(CNT)のエポキシマトリックスへの組み込みおよびそれによるエポキシ系CNTナノ複合材料を製造の方法に関する。初期およびオゾン処理CNTはいずれも、常に、この方法により樹脂中へ均質に分散される。初期CNT(p−MWCNT)と比べて、オゾン処理CNT(f−MWCNT)は、エポキシ樹脂内で機械特性についてかなり向上させる。 (もっと読む)


【課題】カーボンナノ材料が飛散する心配が無く、酸化物が介在する心配が無い複合材料の製造技術を提供することを課題とする。
【解決手段】図(a)に示すように、上部が開いている耐熱容器28の底にカーボンナノ材料13を入れる。次に、図(b)に示すように、カーボンナノ材料13の上に、固相のマトリックス金属材料29を載せる。図(c)に示すように、耐熱容器28に蓋30を被せて密閉し、加熱を開始する。すると、マトリックス金属材料29が軟化し、流れて耐熱容器28の内壁に到達する。
【効果】カーボンナノ材料13は、マトリックス金属材料29で密閉されたことになる。耐熱容器28内には微量の酸素が残存しているが、マトリックス金属材料29で密閉された後には、残存酸素がカーボンナノ材料13又はSi被覆カーボンナノ材料25に到達する心配はなく、酸化等の心配が少なくなる。 (もっと読む)


【課題】薄膜化や分散化に優れたオニオンライクカーボンの作製方法を提供し、オニオンライクカーボンの潤滑特性を十分に活用することを目的とする。
【解決手段】10−7Pa以上の真空度に保持された反応室内で、アークプラズマ発生手段としてアークプラズマガンを用いてカーボンをターゲットに照射させ、オニオンライクカーボンを合成する。アークプラズマガンのカソードとしてカーボンロッドを搭載し、高純度のカーボンイオンを照射する。また、オニオンライクカーボンの合成は、放電電圧、放電パルス数、真空度を作製条件パラメータとして使用する。 (もっと読む)


【課題】高硬度で緻密な炭素膜を形成することを可能とし、更なる薄膜化が可能な炭素膜の形成方法を提供する。
【解決手段】減圧した成膜室101内に炭素を含む原料の気体Gを導入し、この気体Gを高周波プラズマによりイオン化し、このイオンを用いて基板Dの両表面に炭素膜を形成する炭素膜の形成方法であって、高周波プラズマにより原料の気体Gをイオン化するプラズマ空間106と、イオンを加速させる加速空間108とが連続する成膜室101内において、基板Dを加速空間108内に配置し、この状態で加速していないイオン又は加速されたイオンを用いて、基板Dの両表面に炭素膜を形成する第1の工程と、第1の工程の後に、第1の工程時よりも反応圧力を下げた状態で、第1の工程時よりも加速度を高めたイオンを用いて、基板Dの両表面に炭素膜を形成する第2の工程とを含む。 (もっと読む)


【課題】 水や極性有機溶媒への溶解性又は分散性、分散安定性に優れた高分散性の表面修飾ナノダイヤモンドを得る。
【解決手段】 本発明の表面修飾ナノダイヤモンドは、表面が、下記式(1)
【化1】


[式中、A1、A2はそれぞれ炭素数1〜20のアルキレン基を示し、A3は単結合又は炭素数1〜20のアルキレン基を示し、nは−CH2CH2O−単位の平均重合度を示し、2以上である]
で表されるポリエチレングリコール鎖を含む基により修飾されている。式(1)において、A2が炭素数3のアルキレン基を示し、−O−(CH2CH2O)n−が数平均分子量200〜20000のポリエチレングリコールに対応するポリエチレングリコール鎖であるのが好ましい。 (もっと読む)


カーボンを含む凝集アセンブリは、粉体、粒子、フレーク、または緩い凝集体の形態でカーボンを得ること、機械的混合および/または超音波処理によって、液体ハロゲンに前記カーボンを分散させること、そして、一般的に蒸発によって液体ハロゲンを実質的に除去し、カーボン凝集アセンブリを形成することにより製造される。この方法は、カーボンナノチューブの自立型モノリシックアセンブリを、高い充填密度と低い電気抵抗率を有するフィルム、ウエハ、ディスクの形態で製造するのに特に適している。アセンブリには、電池やスーパーコンデンサの中の電極や電磁妨害遮蔽物質としての様々な応用用途がある。 (もっと読む)


繊維材料上のカーボン・ナノチューブ(CNT)合成システムは、カーボン・ナノチューブが成長するバリア・コーティングを受入れるために前記繊維材料の表面を改質するのに適用された表面処理システム、前記処理された繊維材料表面に前記バリア・コーティングを塗布するのに適用された、前記表面処理システム下流側のバリア・コーティング塗布システム、及び、CNT成長触媒ナノ粒子の受入れを強化するため前記塗布されたバリア・コーティングを部分的に硬化するための、前記バリア・コーティング塗布システム下流側のバリア・コーティング硬化システムを含んで構成される。
(もっと読む)


【課題】高比表面積、高純度でありかつ高さあるいは長さの飛躍的なラージスケール化を達成した、パターニング化された配向単層カーボンナノチューブ・バルク構造体の製造方法を提供する。
【解決手段】金属触媒を基板上にパターニングして設け、前記金属触媒から反応雰囲気ガス中で炭素源として炭素化合物を用いて、複数本の単層カーボンナノチューブを生成することにより、パターニングされた単層カーボンナノチューブ・バルク構造体を製造する。 (もっと読む)


組成物には、巻き取り可能な寸法のガラス繊維材料と、それに結合されるカーボン・ナノチューブ(CNTs)と、を含むカーボン・ナノチューブ(CNT)浸出ガラス繊維材料が含まれる。CNTsは、長さ及び分布が均一である。CNT連続浸出処理には、(a)巻き取り可能な寸法のガラス繊維材料の表面にCNT形成触媒を配置すること、及び(b)ガラス繊維材料にカーボン・ナノチューブを合成し、それにより、カーボン・ナノチューブ浸出ガラス繊維材料を形成すること、が含まれる。CNT連続浸出処理には、溶融ガラスからガラス繊維材料を押し出すこと、又は既製のガラス繊維材料からサイジング材料を除去すること、が任意に含まれる。 (もっと読む)


【課題】電子機器、精密機器などの放熱を解決できる優れた熱拡散性と、屈曲部分への使用に耐えうる耐屈曲性を合わせ持つグラファイトフィルムおよびグラファイト複合フィルムを提供する。
【解決手段】MIT耐屈曲試験において、幅15mmの短冊型試験片を使用し、折り曲げクランプの曲率半径Rが2mm、左右の折り曲げ角度135度、折り曲げ速度90回/分、荷重0.98Nの条件で測定した切断するまでの往復折り曲げ回数が10000回以上であるグラファイトフィルムである。 (もっと読む)


金属およびナノ粒子、とりわけカーボンナノチューブを含む複合材料ならびにその製造方法が本明細書内に開示される。金属粉末およびナノ粒子は、1nmから100nmの範囲の平均サイズ、好ましくは、10nmから100nmの範囲の平均サイズ、または100nmより大きくかつ200nm以下の範囲の平均サイズを有し、前記ナノ粒子によって少なくとも部分的に互いに分離される金属結晶を含む複合材料を形成するよう、メカニカルアロイングによって処理される。 (もっと読む)


本発明は、カーボンナノチューブを使用してナノ粒子を調製する方法およびかかる方法により調製されたナノ粒子に関する。特に、物理的に強固で、化学的に強力な結合を有するカーボンナノチューブを、金属、ポリマーまたはセラミックの粉末粒子をナノサイズの粒子に砕くために使用する。さらに、かかる方法により調製されたナノ粒子は、小さなサイズであり、カーボンナノチューブを含むことから、それらのナノ粒子を良好な酸化性を有する金属について採用するという条件で、可燃性を必要とする、例えば固形燃料、火薬などの適用に利用することができる。また、優れた機械的特性および伝導性により、カーボンナノチューブを関連製品に適用することができる。
(もっと読む)


141 - 160 / 465