説明

Fターム[5F082EA23]の内容

バイポーラIC (6,722) | 製造方法 (659) | 堆積 (243) | エピタキシャル成長 (221) | 分子線エピタキシャル (76)

Fターム[5F082EA23]に分類される特許

41 - 60 / 76


【課題】高い電流利得が得られる半導体装置及びその製造方法を提供する。
【解決手段】基板と、基板の上に設けられた第1導電型のベース層と、ベース層に接続されたベース電極と、ベース層の上に設けられた第2導電型のコレクタ層と、コレクタ層の上に設けられたコレクタ電極と、ベース層の上に設けられた第2導電型のエミッタ層と、エミッタ層の上に設けられたエミッタ電極と、コレクタ層とエミッタ層との間に設けられベース層上でコレクタ層とエミッタ層とを分離する、幅が100nm(ナノメートル)以下の分離溝とを備えている。 (もっと読む)


【課題】半導体装置の耐湿性向上を図ることができる技術を提供する。
【解決手段】半絶縁性基板であるGaAs基板40において、素子形成領域にHBT30を形成し、絶縁領域に素子分離領域47を形成する。絶縁領域に形成される素子分離領域47は、HBT30のサブコレクタ用半導体層41とコレクタ用半導体層42と同層の半導体層にヘリウムを導入することにより形成されている。外周領域において、保護膜52、55から露出するように導電層49を形成し、この導電層49を裏面電極と接続する。裏面電極にはGND電位が供給されるので、導電層49はGND電位に固定される。この導電層49は、HBT30のサブコレクタ用半導体層41とコレクタ用半導体層42と同層の半導体層により形成される。 (もっと読む)


【課題】BICMOS統合のために選択的エピタキシャル成長を用いる、隆起した外因性自己整合型ベースを有するバイポーラ・トランジスタを提供する。
【解決手段】隆起した外因性自己整合型ベースを有する高性能バイポーラ・トランジスタが、CMOSデバイスを含むBiCMOS構造と統合される。パッド層を形成して、先在するCMOSデバイスのソースおよびドレインに対して真性ベース層の高さを隆起させることにより、かつ選択的エピタキシを介して外因性ベースを形成することにより、表面の凹凸の影響は、外因性ベースのリソグラフィによるパターン形成時に最小になる。また、バイポーラ構造の製作の間に、化学機械研磨プロセスを使用しないことにより、プロセス統合の複雑さが軽減される。内側のスペーサまたは外側のスペーサが、エミッタからベースを分離するために形成されうる。パッド層、真性ベース層、および外因性ベース層は、一致した外側の側壁表面を有するメサ構造を形成する。 (もっと読む)


2つの別個の成長過程を用いて統合BiFETを製作するための方法及びシステムを開示する。本発明を実施すると、BiFETのFET部分が第1製作環境で製作される。本発明を実施すると、BiFETのHBT部分が第2製作環境で製作される。FET部分とHBT部分の製作を2つ以上の別々の反応器内に分離することで、最適な装置性能が両方の装置で達成される。
(もっと読む)


【課題】素子分離領域を通過するリーク電流を感度高く検出できる半導体装置を提供する。
【解決手段】ベース電極を含むバイポーラトランジスタ領域と、抵抗を含む抵抗領域と、前記抵抗の一方の端部と、前記ベース電極と、を接続する配線層と、前記バイポーラトランジスタ領域と前記抵抗領域とを分離する素子分離領域と、を備え、前記バイポーラトランジスタ領域内のコレクタ層と前記抵抗との間において、前記素子分離領域を通過して前記抵抗に流れるリーク電流を、前記配線層を介して前記ベース電極に供給することを特徴とする半導体装置が提供される。 (もっと読む)


【課題】多重型トランジスタ半導体構造を提供すること。
【解決手段】半導体構造が2つの異なった部分を用いて形成される。第1の部分は第1のトランジスタを形成し、第2の部分は第2のトランジスタを形成する。第1のトランジスタの複数の部分が第2のトランジスタの複数の部分をも構成する。すなわち、第1のトランジスタ及び第2のトランジスタの両方が、同一の構造における複数の部分により構成される。 (もっと読む)


【課題】省スペース性および高周波特性を両立する半導体装置およびその製造方法を提供する。
【解決手段】本発明に係る半導体装置100は、半導体基板1と、半導体基板1上に形成されたサブコレクタ層2と、サブコレクタ層2上に形成されたコレクタ層3と、コレクタ層3上に形成されたベース層4と、ベース層4上に形成されたエミッタ層5と、コレクタ層3と接続されるコレクタ電極8aと、ベース層4と接続されるベース電極7と、エミッタ層5と接続されるエミッタ電極6と、サブコレクタ層2をスパイラル状に区画する絶縁領域16と、スパイラル状に区画されたサブコレクタ層2の一端に接続される第1のインダクタ電極8bと、スパイラル状に区画されたサブコレクタ層2の他端に接続される第2のインダクタ電極8cとを備える。 (もっと読む)


【課題】従来の回路では生じるコストや面積の増大を低く抑えながら高いESD耐性が実現できる保護回路を備えた電力増幅器を提供する。
【解決手段】半導体基板には、少なくとも1つのバイポーラトランジスタ10を有する能動素子と、バイポーラトランジスタ10のベース5とエミッタ6間をベース・エミッタ間ダイオードとは逆方向となるように接続されたダイオードDと、ダイオードDとバイポーラトランジスタ10のベース5との間に直列に接続された抵抗Rと、バイポーラトランジスタ10のベース5にバラスト抵抗Rを介して接続されたバイアス回路17が形成されている。抵抗Rは、バイアス回路17のバラスト抵抗Rを兼ねている。 (もっと読む)


【課題】 HBTでは、ベース電流を増加させて電流密度の向上を図ると、二次降伏を起し、破壊に至りやすくなる。
【解決手段】 単位HBTと単位FETを分離領域を介して隣接して配置し、単位HBTのベース電極に単位FETのソース電極を接続した単位素子を複数接続して能動素子を構成する。これにより、単位素子に電流が集中した場合であっても二次降伏による破壊が発生しない能動素子を実現できる。また単位FETでは耐圧を確保するため埋め込みゲート電極構造を採用するが、埋め込み部をInGaP層に拡散させない構造とすることによりPtの異常拡散を防止できる。更に、単位HBTのエミッタメサ、ベースメサ形成、レッジ形成および単位FETのゲートリセスエッチングに選択エッチングを採用でき、再現性が良好となる。 (もっと読む)


【課題】増幅利得の向上(高出力動作)と熱暴走抑制効果の向上(安定動作)とを両立させた、半導体電力増幅器及びその製造方法を提供する。
【解決手段】各HBT40のエミッタは、並列接続された第1のエミッタバラスト抵抗体41及び第2のエミッタバラスト抵抗体42を介して、エミッタ(接地)端子3にそれぞれ接続される。第1のエミッタバラスト抵抗体41と第2のエミッタバラスト抵抗体42とは、温度変化に伴う抵抗値の変化傾向が相反する温度特性を有した材料で形成される。これにより、第1のエミッタバラスト抵抗体41が有する温度上昇に従って抵抗値が減少(又は増加)する欠点を、第2のエミッタバラスト抵抗体42が有する温度上昇に従って抵抗値が増加(又は減少)する欠点で緩和させることが可能となる。 (もっと読む)


【課題】 ヘテロ接合バイポーラトランジスタ及びフォトダイオードが電気信号の劣化を伴うことなく接続され、全面再成長の特徴である高集積度を損ねることなく、動作速度及び受光感度に優れた光電子集積回路を提供する。
【解決手段】 光電子集積回路は、光素子2のアノード電極9又はカソード電極8からの配線19が[011]方向に形成されて素子に接続されることを特徴としている。 (もっと読む)


【課題】本発明によれば、バイポーラトランジスタからなる集積回路の多様な製造方法を提供する。
【解決手段】本発明の一実施の形態によれば、バイポーラトランジスタは、基板と、複数の交互にドープされた領域を含み、複数の交互にドープされた領域は正味の第1導電型から正味の第2導電型へ横方向に交互に配置されたコレクタと、コレクタと電気的にコンタクトするコレクタコンタクトからなるように構成できる。また、バイポーラトランジスタは、コレクタの下において高濃度にドープされた埋め込み層と、ベースコンタクトと電気的にコンタクトし、正味の第2導電型にドープされ、複数の交互にドープされた領域の一部にかかるベースと、ベース内に配置され、正味の第1導電型にドープされたエミッタからなり、エミッタの下の複数の交互にドープされた領域の一部が、約3×1012cm-2未満の濃度でドープされていることを特徴とすることができる。 (もっと読む)


【課題】 互いに並列に接続されたベースバラスト抵抗及び容量を付加したHBT等のヘテロ接合型半導体素子を有する半導体装置において、その素子面積を縮小し、かつ作製工程の簡略化も可能にすること。
【解決手段】
少なくともコレクタ層3とベース層5と第1のエミッタ層7Aとからなる積層体によって構成されたHBT15a及び15bを有し、これらのHBTと同一構成材料からなる積層体16において、各HBTのベースに接続されたベース構成材料層5と、ベース信号入力端子電極に相当するエミッタ構成材料層上のエミッタ電極9との間に、ベース構成材料によるベースバラスト抵抗13と、エミッタ及びベース構成材料からなる逆方向ダイオードによる容量14とが並列に接続されることによって、並列の複数のHBTの熱暴走を防止する構造を素子面積の縮小の下で容易に作製することができる。 (もっと読む)


【課題】 ヘテロ接合半導体素子とダイオード素子とが同一基板上に集積され、ヘテロ接合半導体素子単独の場合と同程度の簡易なエピタキシャル層の積層構造からなり、かつ、ダイオード素子の特性が、ヘテロ接合半導体素子の構成材料層の特性によって制約されることが少ない半導体装置及びその製造方法を提供すること。
【解決手段】 半絶縁性基板1の上にエピタキシャル成長法によって、サブコレクタ層2、コレクタ層3、ベース層4、エミッタ層5、エミッタキャップ層6の構成材料層を形成し、これらの一部をメサ構造に加工してHBT10を形成する。また、別の領域をメサ形状に加工して、それぞれ、PINダイオードのn型層16aと16b、i型層15aと15bおよびp型層14とする。このうち、i型層15aと15bは、エミッタ構成材料層15に不活性化イオンを注入して高抵抗化して形成する。 (もっと読む)


【課題】 ヘテロ接合半導体素子と別の半導体素子とが同一基板上に集積され、かつ、この別の半導体素子の電極取り出し構造が改良された半導体装置及びその製造方法を提供すること。
【解決手段】 前記別の半導体素子の一例である抵抗素子20を構成する抵抗層11を、イオン注入法または不純物拡散法によって半絶縁性基板1内に形成する。次に、サブコレクタ層2、コレクタ層3、ベース層4、エミッタ層5、そしてエミッタキャップ層6の構成材料層を、基板1の全面にエピタキシャル成長法によって形成する。次に、これらの一部をメサ構造に加工して、HBT10を形成する。一方、抵抗素子20の素子電極14、15を高い位置で取り出すための導電層12、13を、サブコレクタ層2の構成材料層42のパターニングによって形成し、素子電極14、15をこの上に形成する。次に、BCBなどの平坦化膜30を形成し、これを介して配線31、32を形成する。 (もっと読む)


【課題】近接する2つの素子間に高濃度不純物領域を配置し、フローティング電位またはGND電位を印加することにより2つの素子間のアイソレーションを向上させる手法は、漏れた高周波信号のパワーが大きい場合に高濃度不純物領域の電位が変動してしまう。このため、結果として2つの素子間のアイソレーションが十分確保できなくなる問題があった。
【解決手段】近接する2つの素子間に伝導領域または金属層による分離素子を配置する。分離素子は高抵抗素子を接続し、直流端子パッドに接続する。また直流端子パッドから分離素子に至る接続経路は電位が高周波振動しない経路とする。これにより、少なくとも一方に高周波信号が伝搬する2つの素子の間に高周波GND電位を配置したこととなり、2つの素子間の高周波信号の漏れを防止できる。 (もっと読む)


【課題】 HBTは、ベース−エミッタ間電流が正の温度係数を持つため、コレクタ電流も正の温度係数を持つ。従って、ベース電流を増加させて電流密度の向上を図ると、複数並列接続されたHBTの単位素子のうち、1つの単位素子に電流が集中して二次降伏を起し、破壊に至りやすくなる。
【解決手段】 HBTとFETを分離領域を介して隣接して配置し、HBTのベース電極にMESFETのソース電極を接続した単位素子を複数接続してスイッチ回路装置を構成する。単位素子を並列に複数接続したスイッチ回路装置において、単位素子毎に動作電流が不均一となっても、1つの単位素子に電流が集中することはなく二次降伏による破壊は発生しない (もっと読む)


【課題】 HBTは、ベース−エミッタ間電流が正の温度係数を持つため、コレクタ電流も正の温度係数を持つ。従って、ベース電流を増加させて電流密度の向上を図ると、複数並列接続されたHBTの単位素子のうち、1つの単位素子に電流が集中して二次降伏を起し、破壊に至りやすくなる。
【解決手段】 HBTとFETを分離領域を介して隣接して配置し、HBTのベース電極にMESFETのソース電極を接続した単位素子を複数接続して能動素子を構成する。単位素子を並列に複数接続した能動素子において、単位素子毎に動作電流が不均一となっても、コレクタ電流が負の温度係数を持つため1つの単位素子に電流が集中することはなく二次降伏による破壊は発生しない (もっと読む)


【課題】 HBTとFETを1チップに集積化する際、HBTのエミッタキャップ層をFETのチャネル層としており、FETのピンチオフ性が悪く相互インダクタンスgmが低い。また、複数回のイオン注入、アニール、ベースペデスタルの形成、さらには2回のエピタキシャル成長を行うなど製造工程が複雑であった。
【解決手段】 HBTのエミッタ層とFETのチャネル層を、同一のn型InGaP層とする。また、HBTのベース層であるp+型GaAs層を、FETのp型バッファ層として利用する。これにより、FETのピンチオフ性が良好となり相互インダクタンスgmを高めることができる。またエピタキシャル成長が1回で、イオン注入、アニール工程も不要のため製造工程も簡素化でき、ウエハコストも低減できる。 (もっと読む)


【課題】HBTにおける高い耐電圧特性と優れた高速特性を維持した状態で、バラクタダイオードにおける広い容量可変幅を確保する。
【解決手段】1つの共通の半絶縁性基板1上に、HBT20とバラクタダイオード21とを形成したマイクロ波モノリシック集積回路において、HBTとバラクタダイオード21とに共通するコレクタ層を、コレクタコンタクト層4側に位置する第1のコレクタ層22a、22bと、反コレクタコンタクト層側に位置する第2のコレクタ層23a、23bとで構成し、さらに、第1のコレクタ層のキャリア濃度を第2のコレクタ層のキャリア濃度より高く設定している。そして、バラクタダイオード21においては、第2のコレクタ層23b上にショットキー電極24を形成する。 (もっと読む)


41 - 60 / 76