説明

Fターム[5F172NN26]の内容

レーザ (22,729) | 課題・目的 (2,491) | 特定パラメータの制御・安定化 (1,262) | 出力光 (1,140) | パルスの時間波形 (126)

Fターム[5F172NN26]に分類される特許

121 - 126 / 126


【課題】集積回路リソグラフィのような用途において利用される高ピークパワー短パルス持続時間ガス放電レーザシステム、例えばエキシマ又は他のフッ素ガス放電レーザ、例えばフッ素分子ガス放電レーザシステムを提供する。
【解決手段】高ピークパワー短パルス持続時間ガス放電レーザ出力パルスを供給するための装置及び方法が開示され、これは、パルスストレッチャを含むことができ、これは、出力レーザパルスの一部分を光遅延経路を有する光遅延内に迂回させるレーザ出力パルス光遅延開始光学機器と、光遅延の出力をレーザ出力パルス光遅延開始光学機器に送出するように直列に整列した複数の共焦点共振器とを含むことができる。複数の共焦点共振器は、12パス4ミラー構成を構成する4つの共焦点共振器を含む。複数の共焦点共振器の各々は、曲率半径を有する第1の凹球面ミラーと、同じ曲率半径を有し、その曲率半径だけ離間している第2の凹球面ミラーとを含むことができる。パルスストレッチャは、第1の共焦点共振器セルを含むことができ、この第1の共焦点共振器セルは、第1の凹球面ミラーの面上の第1の点での出力レーザパルスの部分を含むレーザ出力パルス光遅延開始光学機器からの入力ビームを受光して第1の反射ビームを発生させる曲率半径を有する第1の凹球面ミラーと、同じ曲率半径を有してその曲率半径だけ第1の凹球面ミラーから離間し、第2の凹球面ミラーの面上の第1の点で第1の反射ビームを受光して、第1の凹球面ミラーの面上の第2の点に入射する第2の反射ビームを発生させる第2の凹球面ミラーとを含むことができ、第2の反射ビームは、第1の凹球面ミラーにより第1のミラー上の第2の点から反射されて第1の共焦点共振器セルからの出力ビームを形成し、この第1の共焦点共振器セルは、更に、第1の共焦点共振器セルの出力ビームを第2の共焦点共振器セルの入力ビームとして受光する第2の共焦点共振器セルを含むことができる。この装置及び方法は、ビーム送出ユニットの一部を形成することができ、かつ集積回路リソグラフィ光源又は集積回路リソグラフィツールの一部とすることもできる。この装置及び方法は、複数、例えば2つのパルスストレッチャを直列に含むことができ、かつ空間コヒーレンス測定法を含むこともできる。 (もっと読む)


【課題】
【解決手段】
ターゲット材料を囲む少なくとも1つの材料の電気的または物理的な特徴に望ましくない変化を起こすことなく、微視的な領域内においてターゲット材料を処理するためのレーザに基づくシステムにおいて、システムが、シードレーザと、光学増幅器と、ビーム発射装置とを具える。シードレーザは、第1の予め定められた波長を有する連続するレーザパルスを発生するためのシードレーザである。光学増幅器は、増幅された連続する出力パルスを得るために、連続するパルスの少なくとも一部を増幅するための光学増幅器である。ビーム発射装置は、増幅された連続する出力パルスの少なくとも1つのパルスをターゲット材料に発射して焦点を合わせるためのビーム発射装置である。少なくとも1つの出力パルスが約10ピコ秒から1ナノ秒未満の範囲のパルス持続時間を有する。パルス持続時間が熱処理範囲内である。少なくとも1つの焦点を合わせられた出力パルスがターゲット材料内の位置で十分なパワー密度を有し、ターゲット材料の反射力を減少して、ターゲット材料を除くために焦点を合わされた出力をターゲット材料内に効果的に結びつける。 (もっと読む)


高エネルギピコ秒、ナノ秒パルス用ファイバベース光源が記載される。ファイバ増幅器での非線形エネルギ制限を最小化することで、光ファイバの損傷閾値に近いパルスエネルギが発生され得る。少なくとも一つの非線形ファイバ増幅器を含む増幅器チェーンと共に最適化されたシード光源を実施することは、バンド幅制限近い高エネルギピコ秒パルスの発生を可能にする。高エネルギパルス化されるファイバ増幅器の最適化シード光源は、半導体レーザも伸長モードロックファイバレーザも含む。ファイバ増幅器から得られるパルスエネルギの最大化は、さらに高繰り返し周期で高エネルギ紫外、赤外パルスの発生を可能にする。

(もっと読む)


マスターオシレータ増幅器において、ダイオードレーザー(202)の駆動回路(208)を特別に制御して2つ以上の注入レーザーパルスの組を発生し、これらのパルス組を非飽和状態で動作する増幅器(204)に注入して、これらの注入レーザーパルスの時間的なパワー特性を複製したレーザーパルス(52)の組(50)を発生して、メモリーまたは他のICチップ内の導電リンク22及び/またはその上にあるパシベーション層(44)を除去する。各組(50)は、少なくとも1つの特別に整形したパルス(52)及び/または異なる時間的なパワー特性を有する2つ以上のパルス(50)を含む。組(50)の持続時間は十分小さく、通常の位置決めシステム(380)によって単一の「パルス」として扱われ、オン・ザ・フライのリンク除去が停止なしに実行される。
(もっと読む)


特別形態の時間的パワープロファイルのレーザパルスは、従来の時間的波形又はほぼ正方形の波形の変わりに、ICリンクを切断する。特別形態のレーザパルスは、好適に、レーザパルスの開始でのオーバーシュート又はレーザパルスの持続時間内のスパイクパルスのいずれかを有する。スパイクピークのタイミングは、リンク部がほぼ完全に除去されるときの時間の前に、好適に設定される。特別形態のレーザパルス・パワープロファイルは、例えば、緑色、UV域などの、レーザパルスの広いパワー範囲と、短いレーザ波長の使用を可能とし、基板及びリンクの側部及び下部のいずれかに配置する不動態化構造部に、ほぼダメージを与えることなく、リンクを切断する。
(もっと読む)


レーザ(l26)及びAOM(10)は、レーザのパルスからパルスへのエネルギー安定性を損なうことなく、可変の非照射間隔で加工レーザ出力(40)を生じるように、ほぼ等間隔及びほぼ一定同様の高繰り返しレートでパルスさせる。加工レーザ出力(40)が要求されるときには、RFパルス(38)は、レーザ出力パルス(24)と時間一致でAOM(10)に供給され、ターゲットへレーザパルスを伝送する。加工レーザ出力(40)が要求されないときには、レーザパルスを遮断するように、RFパルス(38)は、レーザ出力パルス(24)と時間不一致でAOM(10)に供給される。即ち、AOM(10)における平均熱負荷は、加工レーザ出力(40)がランダムに、如何に要求されるかに関わらず、ほぼ一定となる。AOM(10)については、供給したRFパルス(38)のパワーを制御することにより、加工レーザ出力(40)のエネルギーを制御するように用いることもできる。RFパワーが変更されるときには、RFパルス(38)の持続時間(44)は、一定の平均RFパワーを維持するように変更される。
(もっと読む)


121 - 126 / 126