説明

国際特許分類[H01L21/331]の内容

国際特許分類[H01L21/331]に分類される特許

101 - 110 / 980


【課題】イオン注入したダイヤモンドの高温高圧アニールにより起こるダイヤモンド表面のエッチングを防ぎ、従来の方法では得られない高品質P型、N型ダイヤモンド半導体を得るダイヤモンド半導体の作製方法を提供すること。
【解決手段】ダイヤモンド基板5−11を用意し、そのダイヤモンド基板5−11上にマイクロ波プラズマCVD装置を用い、メタンを反応ガスとして基板温度700℃でダイヤモンド薄膜5−12を1μm積層する。上記ダイヤモンド薄膜5−12にイオン注入装置を用い、加速電圧60kV、ドーズ量1×1014cm−2でドーパントを打ち込む。その後、イオン注入ダイヤモンド薄膜5−13上に保護層(白金)5−14を形成する。表面に保護層5−14が形成されたイオン注入ダイヤモンド薄膜5−13を、超高温高圧焼成炉内に配置し、3.5GPa以上、600℃以上の圧力、温度下でアニールする。 (もっと読む)


【課題】最大発振周波数fmaxを高くしてダイヤモンド電界効果トランジスタの特性を大きく向上させ、かつ電圧降下を小さく抑えることにより実用レベルに到達させること。
【解決手段】「ソース・ゲート電極間隔dSG、ゲート・ドレイン電極間隔dGDを狭くすること」と「ソース電極の厚さt、ドレイン電極の厚さtを厚くすること」とを両立させるために、ソース電極およびドレイン電極を、エッチング溶液を用いてエッチングする層とレジストを用いてリフトオフする層とに分けて形成する。これにより電極の逆メサ部を小さくすることができるため、ソース電極とゲート電極との間隔を小さくして最大発振周波数fmaxを上げ、かつソース電極およびドレイン電極の厚みを厚くして電圧降下を小さく抑えることができる。 (もっと読む)


【課題】エミッタメサの加工精度を損ねることなく、HBTの高速性および信頼性が向上できるようにする。
【解決手段】エミッタメサの部分の側面およびレッジ構造部105aの表面には、これらを被覆するように、SiNからなる第1絶縁層108が形成されている。また、第1絶縁層108の周囲には、酸化シリコンからなる第2絶縁層109が形成されている。第2絶縁層の下端部には、レッジ構造部1105aが形成されている領域より外側に延在し、第1絶縁層108およびレッジ構造部105aの側方のベース層104との間に空間を形成する庇部109aが形成されている。 (もっと読む)


【課題】結晶欠陥による接合リークを防止しながら、バイポーラトランジスタの面積を縮小し、コレクタ容量の低減によってトランジスタ特性を向上できるようにした半導体装置及びその製造方法を提供する。
【解決手段】活性領域1からSTI4上にかけて連続して形成したSiGe膜は、半導体基板3上ではSiGeエピ膜6となり、STI4上ではSiGeポリ膜7となる。半導体基板3とSTI4の境界はSiGe−HBT形成工程以前の洗浄工程によって段差15が生じており、SiGeエピ膜6及び半導体基板3には、上記境界を基点とした結晶欠陥が応力によって発生する可能性がある。この境界に第1のP型不純物層8及び第2のP型不純物層9を設けることで、結晶欠陥をこれらP型不純物層8、9に内包し、接合リークの発生を抑制する。 (もっと読む)


【課題】薄膜トランジスタ用半導体層の材料として、高い正孔移動度を示すp形半導体多結晶薄膜を、かつ、低い成膜温度でのプラスチック基板上への成膜をも行うことのできるp形半導体多結晶薄膜を、提供する。
【解決手段】ガラスまたはプラスチックまたはステンレス基板のような非結晶質または多結晶基板1上に、該基板の温度を300℃以下とし、成長膜へのガリウム(Ga)、アンチモン(Sb)、及びヒ素(As)原子のそれぞれの供給量JGa,JSb,及びJAsを、JSb<JGa<JAs+JSbを満たすような値として、Ga,Sb,及びAs原子を同時供給して真空蒸着により成膜してなる、Sb組成yが0.5<y<1を満たすp形GaSbyAs1-y多結晶薄膜6を形成する製造方法による。 (もっと読む)


【課題】なだれ増倍を利用して電流を直接増幅することが可能であると共に、リニアモード動作において、高感度と応答速度の速さとを両立させることができる電流増幅素子を提供する。
【解決手段】電流増幅素子は、半導体基板の表面に平面視が円形となるように中心軸の周りに対称に形成されたn型半導体ウエル(n−ウエル)104、n−ウエル内に同心円状に形成されたp型半導体領域112、p型半導体領域内に同心円状に形成されたn型半導体領域112、及び順バイアス電圧と逆バイアス電圧とを印加するための複数の電極を備えている。n−ウエルの内側の面は、中心軸から予め定めた距離の範囲内では基板裏面に向って半径が小さくなると共に、範囲より外側では基板裏面に向って半径が大きくなるように形成されている。 (もっと読む)


【課題】表面上に素子をより高密度に実装する。
【解決手段】第1のトレンチと第2のトレンチとの間の位置において、エピタキシャル層の表面から基板へと下方に延在するドーパントのウェルは、エピタキシャル層の背景ドーピング濃度とは異なるドーピング濃度を有し、エピタキシャル層の残りの部分と第1および第2の接合を形成する。第1の接合は、第1のトレンチの底部から基板に延在し、第2の接合は、第2のトレンチの底部から前記基板に延在する。ウェルおよび第1および第2のトレンチは分離構造を構成し、分離構造は、分離構造の一方側のエピタキシャル層に形成された第1の素子と分離構造の他方側のエピタキシャル層に形成された第2の素子とを電気的に分離する。分離構造による電気的分離は第1および第2のトレンチとPN接合とによってもたらされ、ウェルは第1の導電型の材料でドープされ、基板およびエピタキシャル層は、第1の導電型とは反対の第2の導電型の材料でドープされ、第1および第2の接合はPN接合である。 (もっと読む)


【課題】HBTによる段差を低減し、接合面積をより小さくできるようにする。
【解決手段】半絶縁性のInPからなる基板101の上に形成されたアンドープInPからなる第1半導体層102と、第1半導体層102の上に接して形成された第1導電型のInPからなるエミッタ層103と、第1半導体層102の上に接して形成された第2導電型のInGaAsからなるベース層106と、第1半導体層102の上に接して形成されたInGaAsからなるコレクタ層107とを少なくとも備える。加えて、エミッタ層103,ベース層106,およびコレクタ層107は、これらの順に第1半導体層102の平面上で配列して接続されている。 (もっと読む)


【課題】InGaPをエミッタ層として有し、熱的安定性と通電に対する信頼性を両立することの出来るHBTを用いた電力増幅器を提供する。
【解決手段】InGaPエミッタ層を有するHBTにおいて、InGaPエミッタ層5とAlGaAsバラスト抵抗層7の間にGaAs層6を挿入し、ベース層4から逆注入された正孔がAlGaAsバラスト抵抗層7まで拡散、到達することを抑制する。 (もっと読む)


【課題】簡潔な方法で、SeOI基板上の半導体デバイスの半導体領域に接続するラインを提供すること。
【解決手段】第1の側面によると、本発明は埋め込み絶縁層(3、BOX)によってベース基板(2)から隔離された半導体材料の薄い層(1)を含むSeOI(Semiconductor−On−Insulator)基板上に作製された半導体デバイスに関し、デバイスは、薄い層内に第1の伝導領域(1、D1、S、E)と、ベース基板内に第2の伝導領域(5、BL、SL、IL)とを含み、接触(I1、I2、I、I)は絶縁層を貫通して第1の領域と第2の領域を接続する。第2の側面によると、本発明は第1の側面に関する半導体デバイスの製作プロセスに関する。 (もっと読む)


101 - 110 / 980