説明

半導体リレー装置

【課題】MOSFETの半導体リレー装置において、低容量、高耐圧の特性を兼ね備え、かつ負荷との双方向の接続を可能とする。
【解決手段】高耐圧用出力MOSFETと低耐圧用出力MOSFETを1対とする2組の出力部4a、4bを、各低耐圧用出力MOSFET42、43の共通のソース端子に関して互いに対称に構成することにより、各高耐圧用出力MOSFET41、44の各ドレインを外部端子45a、45bとする。これにより、外部端子45a、45bの双方向より高電圧を印加可能とし、安全性、利便性を向上すると共に、複数の低容量の低耐圧用出力MOSFET42、43の直列接続により、外部端子間を低容量化し、高周波特性を向上することができる。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、入力信号に応答して出力される光信号に基づいて、出力部のFETをスイッチング動作させる半導体リレー装置に関するものである。
【背景技術】
【0002】
従来この種の半導体リレー装置としては、例えば、特許文献1に示されるように、2つのFETが直列に接続され、各FETの開放端を入力端子又は出力端子とし、各FETをオン、オフするものがある。図8に、このリレー装置の構成を示す。このリレー装置においては、入力信号により発光するLED101からの光信号を受光素子のフォトダイオードアレイ102で受光して所定電圧を発生し、この所定電圧が、放電回路103を介してMOSFET104、105のゲート端子とソース端子間に接続されている。この半導体リレー装置では、入力信号により出力用MOSFET104、105がスイッチング駆動されて、出力部に接続された負荷電流を開閉している。
【0003】
ところで、出力用MOSFETは、通電されない状態のオフ容量が大きい。また、一般に耐圧が大きくなると、MOSFETのオフ容量Cとオン抵抗Rの積(C×R)が大きくなる傾向があり、そのため単体のMOSFETで高耐圧、低容量、低オン抵抗の性能を同時に満たすMOSFETを得ることは極めて難しい。一方、半導体リレー装置は、高周波負荷及び高電圧負荷に適用するために、低容量性及び高耐圧性が求められる。
【0004】
このために、上記特許文献1に示された半導体リレー装置では、低容量、低耐圧のMOSFET104と高容量、高耐圧のMOSFET105を直列に接続することにより、合成容量を低減させ、低容量、高耐圧の半導体リレー装置を実現している。
【0005】
しかしながら、上記半導体リレー装置においては、低容量、高耐圧の実現は可能であるが、低耐圧のMOSFET104の外部端子106及び高耐圧のMOSFET105の外部端子107と外部負荷とを接続する際に、外部端子106が負荷の高電位側に接続されると、高電圧が低耐圧のMOSFET104に印加され、低耐圧のMOSFET104が耐圧破壊される虞があった。この低耐圧のMOSFET104の耐圧破壊を避けるため、高耐圧のMOSFET105の外部端子107を負荷の高電位側に接続し、低耐圧のMOSFET104の外部端子106を負荷の低電位側に接続する必要があった。
【0006】
従って、上記半導体リレー装置においては、低容量の半導体リレー装置を形成することはできるが、外部端子106、107に双方向より高電圧を印加することができなかった。このため、半導体リレー装置の利用において、安全性及びユーザの利便性を欠くという問題があった。
【0007】
また、他の従来例として、特許文献2に示されるように、高耐圧用MOSFETと低耐圧用出力MOSFETとを直列に接続し、低耐圧用出力MOSFETに微小電流バイパス回路を設け、高耐圧化、低容量化を図った半導体リレー装置が提案されている。しかし、この従来例においても、負荷に接続する2つの外部端子が高耐圧用MOSFET側と低耐圧用出力MOSFET側に存在するため、前記と同様に、外部端子の双方向より高電位を印加できないという問題があった。
【特許文献1】特開平8−298446号公報
【特許文献2】特開2004−289410号公報
【発明の開示】
【発明が解決しようとする課題】
【0008】
本発明は、上記の問題を解決するためになされたものであり、高耐圧用出力MOSFETと低耐圧用出力MOSFETの2組の出力部を、各低耐圧用出力MOSFETのソース端子を共通にして直列接続し、各高耐圧用出力MOSFETの各ドレインを外部端子とすることにより、外部端子の双方向より高電圧を印加可能とし、しかも、複数の低容量の低耐圧用出力MOSFETの直列接続による外部端子間の低容量化を図り高周波特性の向上を図った半導体リレー装置を提供することを目的とする。
【課題を解決するための手段】
【0009】
上記目的を達成するために請求項1の発明は、入力信号に応答して光信号を出力する発光素子を設けた入力部と、前記光信号を受光して所定電圧を発生する受光部と、この所定電圧により出力用MOSFETをスイッチング制御する電圧制御部と、各出力ソースを共通に互いに直列に接続された一対の出力用MOSFETを有する出力部とを備え、前記入力信号に応答して前記出力部を開閉する半導体リレー装置において、前記受光部、前記電圧制御部及び前記出力部を少なくともそれぞれ各2組備え、前記電圧制御部は、充放電制御回路で形成され、該充放電制御回路の高電位側と低電位側には、前記各出力用MOSFETのゲートとソースがそれぞれ接続されると共に、前記一対の出力用MOSFETは、それぞれ高耐圧用出力MOSFETと低耐圧用出力MOSFETで構成され、前記各低耐圧用出力MOSFETのドレイン間を接続することにより前記2組の出力部を直列接続し、前記各高耐圧用出力MOSFETのドレイン端子を外部端子としたものである。
【0010】
請求項2の発明は、請求項1に記載の半導体リレー装置において、前記入力信号のオフ時に、前記低耐圧用出力MOSFETの動作応答時間を遅く、前記高耐圧用出力MOSFETの動作応答時間を速くすることにより、前記低耐圧用出力MOSFETの立ち下がり速度を高耐圧用出力MOSFETの立ち下がり速度より遅くしたものである。
【0011】
請求項3の発明は、請求項1に記載の半導体リレー装置において、前記入力信号のオン時に、前記低耐圧用出力MOSFETの動作応答時間を速く、前記高耐圧用出力MOSFETの動作応答時間を遅くすることにより、前記低耐圧用出力MOSFETの立ち上がり速度を高耐圧用出力MOSFETの立ち上がり速度より速くしたものである。
【0012】
請求項4の発明は、請求項1に記載の半導体リレー装置において、前記入力信号のオフ時に、前記低耐圧用出力MOSFETの動作応答時間を遅く、前記高耐圧用出力MOSFETの動作応答時間を速くすることにより、前記低耐圧用出力MOSFETの立ち下がり速度を高耐圧用出力MOSFETの立ち下がり速度より遅くすると共に、前記入力信号のオン時に、前記低耐圧用出力MOSFETの動作応答時間を速く、前記高耐圧用出力MOSFETの動作応答時間を遅くすることにより、前記低耐圧用出力MOSFETの立ち上がり速度を高耐圧用出力MOSFETの立ち上がり速度より速くしたものである。
【0013】
請求項5の発明は、請求項2に記載の半導体リレー装置において、前記各高耐圧用出力MOSFETのゲートと前記各充放電制御回路の高電圧側との間にダイオードと抵抗がそれぞれ並列に接続され、該ダイオードのアノードは前記各高耐圧用出力MOSFETのゲートに接続されているものである。
【0014】
請求項6の発明は、請求項3に記載の半導体リレー装置において、前記各低耐圧用出力MOSFETのゲートと前記各充放電制御回路の高電圧側との間にダイオードと抵抗がそれぞれ並列に接続され、前記ダイオードのカソードは前記各低耐圧用出力MOSFETのゲートに接続されているものである。
【0015】
請求項7の発明は、請求項4に記載の半導体リレー装置において、前記各高耐圧用出力MOSFETのゲートと前記各充放電制御回路の高電圧側との間にダイオードと抵抗がそれぞれ並列に接続され、該ダイオードのアノードは前記各高耐圧用出力MOSFETのゲートに接続されると共に、前記各低耐圧用MOSFETのゲートと前記各充放電制御回路の高電圧側との間にダイオードと抵抗がそれぞれ並列に接続され、前記ダイオードのカソードは前記各低耐圧用出力MOSFETのゲートに接続されているものである。
【0016】
請求項8の発明は、請求項1乃至請求項7に記載の半導体リレー装置において、前記外部端子に接続される負荷電圧が、所定の電圧V1以上において高周波変動し、この高周波変動の最低電位を前記所定の電圧V1とし、その最高電位を前記電圧V1に該電圧V1より小さいある電圧V2を加えた電圧(V1+V2)である場合、前記出力部の低耐圧用出力MOSFETが前記電圧V2以上の耐圧を持つものである。
【0017】
請求項9の発明は、請求項8に記載の半導体リレー装置において、前記低耐圧用出力MOSFETのドレイン−ソース間に、該低耐圧用MOSFETの耐圧以下の耐圧を持つツェナーダイオードを逆並列に備えているものである。
【0018】
請求項10の発明は、請求項9に記載の半導体リレー装置において、前記ツェナーダイオードは前記低耐圧用出力MOSFETと同一チップに形成され、かつ該低耐圧用出力MOSFETのゲート電極材料と同じポリシリコンで形成されているものである。
【発明の効果】
【0019】
請求項1の発明によれば、高耐圧用出力MOSFETと低耐圧用出力MOSFETの2組の出力部を、各低耐圧用出力MOSFETの共通のソース端子に関して互いに対称に構成しているので、各高耐圧用出力MOSFETの各ドレインを外部端子とすることができ、外部端子の双方向より高電圧を印加可能となり、安全性、利便性が向上すると共に、複数の低容量の低耐圧用出力MOSFETの直列接続による外部端子間の低容量化により高周波特性が向上する。
【0020】
請求項2の発明によれば、入力信号によるリレーのオフ時において、低耐圧用出力MOSFETを過電圧による破壊から保護することができる。
【0021】
請求項3の発明によれば、入力信号のオン時において、低耐圧用出力MOSFETを過電圧による破壊から保護することができる。
【0022】
請求項4の発明によれば、入力信号のオフ時及びオン時のいずれにおいても、低耐圧用出力MOSFETを過電圧による破壊から保護することができる。
【0023】
請求項5の発明によれば、入力信号のオフ時において、高耐圧用出力MOSFETの動作応答時間の速度を低耐圧用出力MOSFETの動作応答時間の速度より遅くすることができるので、低耐圧用出力MOSFETを過電圧による破壊から保護することができる。
【0024】
請求項6の発明によれば、入力信号のオン時において、低耐圧用出力MOSFETの動作応答時間の速度を高耐圧用出力MOSFETの動作応答時間の速度より遅くすることができるので、低耐圧用出力MOSFETを過電圧による破壊から保護することができる。
【0025】
請求項7の発明によれば、入力信号のオフ及びオン時に対応して、それぞれ低耐圧用出力MOSFET及び高耐圧用出力MOSFETの動作応答時間の速度を遅くすることができるので、入力信号によるリレーのオン、オフ時のいずれにおいても低耐圧用出力MOSFETを過電圧による破壊から保護することができる。
【0026】
請求項8の発明によれば、低耐圧用出力MOSFETの耐圧を負荷の高周波振幅電圧を超える範囲でかつ必要最小限の耐圧のMOSFETを選択できるので、オフ容量の小さいMOSFETを使用でき、高周波特性に優れたリレーを実現することが容易となる。
【0027】
請求項9の発明によれば、低耐圧用出力MOSFETに過電圧が加わった場合に、低耐圧用出力MOSFETを破壊する前にツェナーダイオードがブレークダウンするために、過電圧よる低耐圧用出力MOSFETの破壊を防ぐことができる。
【0028】
請求項10の発明によれば、ツェナーダイオードを作製する工程数を削減することができる。また、ポリシリコンを材料に使用することにより、単結晶シリコンよりも加工プロセス上、高精度なツェナー電圧を得られるので、複数個のツェナーダイオードを形成して、低耐圧用出力MOSFETの耐圧以下で必要なツェナー電圧を精度良く得られる。
【発明を実施するための最良の形態】
【0029】
以下、本発明の一実施形態に係る半導体リレー装置について図1及び図2(a)、(b)を参照して説明する。本実施形態における半導体リレー装置は、入力信号に応答して光信号を出力する発光素子を設けた入力部1と、光信号を受光して所定電圧を発生する第1及び第2の受光部2a、2bと、この所定電圧により出力用MOSFETをスイッチング制御する第1及び第2の充放電制御回路3a、3b(電圧制御回路)と、各出力ソースを共通に互いに直列に接続された一対の出力用MOSFETを有する第1及び第2の出力部4a、4bとを備える。これら一対の出力用MOSFETは、それぞれ高耐圧、低オン抵抗、高容量の高耐圧用出力MOSFET41、44(以下、高耐圧FETという)と、低耐圧、低オン抵抗、低容量の低耐圧用出力MOSFET42、43(以下、低耐圧FETという)で構成される。また、各低耐圧FET42、43のドレイン間を接続することにより、2組の出力部4a、4bは直列接続され、全体出力部4を構成する。各高耐圧FET41、44のドレイン端子は、全体出力部4の外部端子45a、45bとなる。なお、出力用MOSFETは、大きな電流を流せるパワーMOSFETを用い、それらの各パワーMOSFETのドレイン−ソース間には、逆方向電流を流す逆方向ダイオードが内蔵されている。
【0030】
入力部1は、発光素子して発光ダイオード11を有し、入力端子12からの入力信号により、発光ダイオード11より光信号を発光する。受光部2a、2bは、受光素子として太陽電池21(又はフォトダイオード)を有し、LED11(発光ダイオード)より光信号を受光して、光起電力を誘起し、所定電圧を発生する。
【0031】
充放電制御回路3a、3bは、電圧制御用のデプレッション型(ノーマリオフ)のMOSFET31及びエンハンスメント型(ノーマリオン)のMOSFET32と、抵抗33とを備え、MOSFET31のドレインとゲートは、受光部2a、2bの高電位側と低電位側にそれぞれ接続される。MOSFET32のドレインとソースは、MOSFET31のソースとゲートにそれぞれ接続されると共に、抵抗R33で短絡され、そのドレインとゲートは、短絡接続される。
【0032】
充放電制御回路3a、3bにおいて、受光部2a、2bからの所定電圧が、MOSFET31のドレインとゲートに加えられると、MOSFET32がオフからオンになり、MOSFET31がオンからオフになる。この時、第1の出力部4a及び第2の出力部4bの各高耐圧FET41、44及び低耐圧FET42、43のゲート、ソース間に電位差が発生し、ゲートが充電され、上記各FET41〜44が駆動する。次に、LED11からの光信号が遮断されると、上記と同様にして、MOSFET32がオンからオフとなり、MOSFET31がオフからオンとなる。これにより、各FET41〜44のゲート、ソース間に電位差が消失し、ゲートが放電され、各FET41〜44がオフ状態となる。この充放電制御回路3a、3bを設けたことにより、各FET41〜44の充放電の切替をスムーズに行うことができる。
【0033】
第1及び第2の出力部4a、4bにおいて、出力用MOSFETは、パワーMOSFETより成り、それらの各パワーMOSFETのドレイン−ソース間には、逆過電圧からFETを保護する逆方向ダイオードが内蔵されている。一般にパワーMOSFETは、入力信号がオンにより発生した所定電圧に基づき、充放電制御回路からの制御電圧が各FET41〜44のゲートとソース間に加えられると、各FET41〜44は導通状態となり、外部端子45aと45b間は導通され、リレーが閉じられる。入力信号がオフになると、充放電制御回路からの制御電圧が無くなり、各FET41〜44は非導通状態となり、外部端子45aと45b間は遮断され、リレーが開放される。
【0034】
上記全体出力部4において、高耐圧FET41、44のオフ耐圧をV1、オフ容量をC1、オン抵抗をR1とし、低耐圧FET42、43のオフ耐圧をV2、オフ容量をC2、オン抵抗をR2とし、V1≫V2、C1≫C2、R1≒R2であるとする。図1に示される全体出力部4では、出力用MOSFETとして、ドレイン、ソース間に逆方向ダイオードを内臓するパワーMOSFETを用いている。端子間耐圧VtはV1≫V2より、
Vt=V1+V2≒V1
端子間容量Ctは、C1≫C2より、
Ct=(C1・C2)/(2・C1+2・C2)≒0.5・C2、
端子間オン抵抗Rtは、
Rt=2(R1+R2)、
となる。このように、端子間容量Ctは、高い方の耐圧V1でほぼ決まるので、高耐圧を維持でき、端子間容量Ctは、低容量の低耐圧FETが2個直列に挿入されているため従来の半分の低容量となり、C×Rの値を小さくすることが可能となる。これにより、高耐圧、低容量、低オン抵抗の半導体リレー装置を得ることができる。
【0035】
また、全体出力部4においては、一対の高耐圧FETと低耐圧FETを持つ第1の出力部4aと第2の出力部4bが逆直列に接続され、外部端子45aと45bは共に、高耐圧FET41、44のドレイン端子となるように構成されている。これにより、半導体リレー装置の両端子は共に高耐圧FET42、44に接続される。そして、第1、第2の出力部4a、4bは低耐圧FET42、43の接続点に対して対称となっているので、半導体リレー装置の外部端子45aと45bと負荷との接続に際して、接続の方向性がなくなり、負荷電圧の高電圧側、低電圧側のいずれに接続しても、低耐圧FET42、43を耐圧破壊を防御することができる。
【0036】
上記のように、本実施形態によれば、高耐圧、低容量、低オン抵抗の全体出力部4を形成することが可能となり、高周波特性に優れた高耐圧の半導体リレー装置を実現することができると共に、負荷接続の双方向性を可能とし、半導体リレー装置の安全性と、ユーザの利便性を向上することができる。
【0037】
また、本回路構成において、低耐圧FETは、高集積性を持つSOI(Silicon on insulator)ウエハを用いて作製することによって、従来品と比較して、さらにC×Rを小さく形成することができる。さらに、低耐圧FETを同一チップにて形成することにより低コスト化が可能となる。また、二つの受光部2a、2b、充放電制御回路3a、3bとを同一チップに形成し、かつ、これらの回路と低耐圧FETとを同一チップにより形成することによって、さらに低コスト化が可能である。
【0038】
次に、本発明の第2の実施形態に係る半導体リレー装置について図2、図(3)を参照して説明する。本実施形態は、上記第1の実施形態の構成において、各低耐圧FET42、43のゲート端子と各充放電制御回路3a、3bの高電圧側との間にダイオード46aと抵抗47aをそれぞれ並列に接続し、ダイオード46aのカソード端子を各低耐圧FET42、43のゲート端子に接続したものである。図2に示した本実施形態において、上記第1の実施形態の部材と同等部材には同一符号を付し、重複説明は省く(以下、同様)。
【0039】
本実施形態の回路構成において、充放電制御回路3a、3bの高電圧側と低耐圧FET42、43のゲート端子との間に、ダイオード46a、抵抗47aの並列回路及びダイオード46b、抵抗47bの並列回路がそれぞれ挿入されている。この回路構成では、入力信号のオン時に、受光部3a、3bからの所定電圧がダイオード46a、46bと抵抗47a、47bの各並列回路を介して高耐圧MOSFET41、44に印加される。この時、各ダイオード46a、46bが順方向接続となるため導通し、その電圧は各ゲート端子に直接印加される。一方、入力信号のオフ時は、各ダイオード46a、46bが逆方向接続となるため、非導通となり、所定電圧が抵抗47a、47bを介して各ゲート端子に接続される。そして、これら抵抗47a、47bと高耐圧MOSFET41、44の入力容量により、高耐圧FET41、44のゲート電圧が遅延される。このため、低耐圧FET42、43の立ち下がりの速さが高耐圧FET41、44より遅くなる。
【0040】
図3(a)、(b)を参照して、高耐圧FET41及び低耐圧FET42の立ち上がり、立ち下がりの動作応答時間の様子を説明する。高耐圧FET44及び低耐圧FET43についても同様であるので、高耐圧FET41及び低耐圧FET42についてのみ説明する。図3(a)は、ダイオード46aと抵抗47aの並列回路が無い場合の立ち上がり、立ち下がりの動作応答時間の状態を示し、(b)は、同並列回路が有る場合の同様の状態を示す。図3(a)において、入力信号は立ち上がりの時間t1でオンし、立ち下がりの時間t7でオフするとする。これに対応して、低耐圧FET42は、入力容量のため時間t1より少し遅れて時間t2でオンし、入力信号の立ち下がりの時間t7とほぼ同時にオフする。また、高耐圧FET41は、入力容量がさらに大きいため、そのオン時間t3及びオフ時間t6は共に、それぞれ低耐圧FET42のオン時間t2及びオフ時間t5より遅くなる。
【0041】
上記回路構成の高耐圧FET41と低耐圧FET42において、各FETとも非導通時にオフ耐圧が掛かる。特に、低耐圧FET42の非導通時に、直列接続されている高耐圧FET41が導通状態であると、外部端子の負荷電圧がほぼ全て低耐圧FET42に印加されるので、低耐圧FET42は過電圧が掛かり耐圧破壊される虞がある。このため、低耐圧FET42は、高耐圧FET41より速くオンし、かつ遅くオフすることが必要である。すなわち、高耐圧FET41のオン状態では、それ以前に低耐圧FET42がオン状態であることが必要である。しかしながら、図3(a)の点線で囲んだA部に示されるように、通常、低耐圧FETは、高耐圧FETより低容量なので、オフの動作応答時間が高耐圧FETより速くなる。このため、入力信号の立ち下がりにおいて、低耐圧FETは高耐圧FETのオン状態において速くオフするので耐圧過剰となり破壊される虞があった。
【0042】
これに対し、図3(b)の点線で囲んだA1部に示されるように、ダイオード46aと抵抗47aをゲート端子側に接続したことにより、低耐圧FET42は、高耐圧FET41より、オフ時間を遅くすることができる。これにより、入力信号の立ち下がり時には、低耐圧FET42は、高耐圧FETより遅くオフするようにできるので耐圧過剰による破壊を防ぐことができる。
【0043】
上記のように本実施形態では、ダイオード46a、46bと抵抗47a、47bによる簡単な並列回路の導入により、入力信号の立ち上がり時に、低耐圧FET42、43の動作応答時間を遅く、高耐圧FET41、44の動作応答時間を速くすることにより、低耐圧FET42、43のオフの速度を高耐圧FET41、44のオフの速度より遅くし、低耐圧FET42、43を過電圧の耐圧破壊から保護することができる。
【0044】
次に、本発明の第3の実施形態に係る半導体リレー装置について図4(a)、(b)を参照して説明する。本実施形態は、上記第1の実施形態の構成において、各高耐圧FET41、44のゲート端子と各充放電制御回路3a、3bの高電圧側との間にダイオード48aと抵抗49a)をそれぞれ並列に接続し、ダイオード48a、48bのアノード端子を各高耐圧FET41、44のゲート端子に接続したものである。
【0045】
本実施形態において、図4(a)に示すように、ダイオード48aと抵抗49aの並列回路、及びダイオード48bと抵抗49bの並列回路がそれぞれ各高耐圧FET41、44のゲート端子に接続されている。この回路構成において、入力信号のオン時に、所定電圧は、ダイオード48a、48bと抵抗49a、49bの各並列回路を介して高耐圧FET41、44に印加されるが、各ダイオード48a、48bが逆方向接続となるため非導通となり、所定電圧は、抵抗47a、47bを介して高耐圧FET41、44の各ゲート端子に印加される。各ゲート端子のゲート電圧は、抵抗47a、47bと高耐圧FET41、44の入力容量により遅延される。このため、高耐圧FET41、42のオンの速さが低耐圧FET42、43より遅くなる。
【0046】
ここで、本実施形態の低耐圧FETと高耐圧FETの動作応答時間の様子を図4(b)に示す。図4(b)の点線で囲まれたB1部に示されるように、入力信号が入力されると、まず、低耐圧FET42が時間t2でオン状態になり、その後、高耐圧FET41が、時間t3よりさらに遅い時間t4でオンされる。
【0047】
ところで、上記ダイオード48aと抵抗49aの並列回路が存在しない場合は、前記図3(a)の点線で囲まれたB部に示されたように、低耐圧FET42は、高耐圧FET41より先にオン状態にあり、オフ状態である高耐圧FET41によって負荷側の電流がせき止められているので、一般には過電圧が印加されて破壊される可能性は低いと考えられる。
【0048】
しかしながら、温度特性、ならびに半導体素子の特性のばらつきを考慮した場合、低耐圧FET42が高耐圧FET41に比べ、動作時間が遅くなってしまう可能性は否定できない。これに対し、ダイオードと抵抗の並列回路を導入することにより、高耐圧FET41のオン時間を時間t3から時間t4へさらに遅延時間を延ばすことができるので、高耐圧FET41の動作時間を、低耐圧FET42に比べて確実に遅くすることができる。すなわち、各FETのゲートを充電する信号入力時にはダイオード48aに並列の抵抗49aが動作を遅延させ、遮断時にはダイオード48aによって素早く放電されるため、高耐圧FET41の立ち上がり動作応答時間のみを遅くすることができる。これにより、従来に比べて、オン時に低耐圧FET42が破壊される危険性をさらに低減することができる。
【0049】
次に、本発明の第4の実施形態に係る半導体リレー装置について図5(a)、(b)を参照して説明する。本実施形態は、上記第1の実施形態の構成において、高耐圧FET41、44及び低耐圧FET42、43のゲート端子と各充放電制御回路3a、3bの高電圧側との間にダイオードと抵抗の並列回路を挿入し、高耐圧FET41、44のゲート端子には、ダイオードのアノード側を接続し、低耐圧FET42、43のゲート端子には、ダイオードのカソード側を接続したものである。
【0050】
図5(a)において、ダイオード46a、46bと抵抗47a、47bによるダイオード・抵抗並列回路が各充放電制御回路3a、3bの高電圧側と低耐圧FET42、43のゲート端子との間にそれぞれ接続され、各ダイオード46a、46bのカソード側が各低耐圧FET42、43のゲート端子に接続される。同時に、ダイオード48a、48bと抵抗49a、49bによるダイオード・抵抗の並列回路が各高耐圧FET41、44のゲート端子と各充放電制御回路3a、3bの高電圧側との間にそれぞれ接続され、ダイオード48a、48bのアノード側は各高耐圧FET41、44のゲート端子側に接続されている。
【0051】
本実施形態の入力信号による高耐圧FET41、44と低耐圧FET42、43の動作応答時間の関係を図5(b)に示す。ダイオード46a、46b、48a、48bと抵抗47a、47b、49a、49bの導入により、入力信号のオン、オフ時に、各高耐圧FETのオンと各低耐圧FETのオフの各動作応答時間をそれぞれ遅くすることができる。すなわち、図5(b)の点線で囲まれたB2部、A2部に示されるように、入力信号がオン時には、高耐圧FET41、44のオンの動作応答時間が時間t2から時間t3に遅延され、入力信号がオフ時には、低耐圧FET42、43のオフ時間が時間t6から時間t7まで遅延される。このように、入力信号のオン時、オフ時とも、低耐圧FET42、43の動作時間範囲内に高耐圧FET41、44の動作時間が存在するようにできるので、高耐圧FET41、44のオン時に、低耐圧FET42、43のオフ状態を無くすことができる。これにより、低耐圧FET42、43を高電圧による破壊から守ることができる。
【0052】
次に、本発明の第5の実施形態に係る半導体リレー装置について図6を参照して説明する。本実施形態は、特に図示しないが、上述の各実施形態において、外部端子に接続される負荷電圧が、所定の電圧V1以上において高周波変動し、この高周波変動の最低電位を所定電圧V1とし、その最高電位を電圧V1に電圧V1より小さいある電圧V2を加えた電圧(V1+V2)であるとする場合、出力部の低耐圧FETが電圧V2以上の耐圧を持つものである。
【0053】
本実施形態において、外部端子45a、45b間の耐圧Vは、高耐圧FETの耐圧をV1とし、低耐圧FETの耐圧をV2とすると、(V1+V2)となる。従って、図6に示すように、負荷電流が負荷の所定電位(Vaとする)以上において高周波動作しており、例えば、高周波変動の振幅(Vbとする)を10Vとし、負荷の所定電位Vaを200Vとして、高周波変動の振幅10Vが所定電位200Vに重畳されているような波形を持つ場合、低耐圧FETの耐圧V2を高周波変動の振幅10V以上程度にすることができる。前述のように、MOSFETのオフ容量は、小さいことが望まれるので、必要とされる耐圧が小さければ小さいほど良い。そのため、高周波変動の振幅Vbを超える範囲において、低耐圧FETの耐圧V2をできるだけ小さくする方が良い。本実施形態によれば、必要最小限の耐圧のMOSFETを選択できるので、オフ容量の小さいMOSFETを使用でき、高周波特性に優れたリレーを実現することが容易となる。
【0054】
次に、本発明の第6の実施形態に係る半導体リレー装置について図7を参照して説明する。本実施形態は、低耐圧FET42、43のドレイン−ソース間に、低耐圧FET42、43の耐圧以下の耐圧を持つツェナーダイオード5a、5bを逆並列に備えている
【0055】
本実施形態によれば、低耐圧FET42、43と逆並列にツェナーダイオード5a、5bを形成し、かつそのツェナーダイオード5a、5bが前記図6の高周波振動の振幅電圧V2以上であって、低耐圧FET42、43の耐圧以下のツェナー電圧を持つ。これにより、低耐圧FET42、43に過電圧が印加された場合に、低耐圧FET42、43をブレークダウンさせずにツェナーダイオード5a、5bがブレークダウンするために、過電圧による低耐圧FET42、43の破壊を防ぐことができる。
【0056】
次に、本発明の第7の実施形態に係る半導体リレー装置について説明する。本実施形態は、前記第6の実施形態において、ツェナーダイオード5a、5bが低耐圧FET42、43と同一チップに形成され、かつ低耐圧FET42、43のゲート電極材料と同じポリシリコンで形成されているものである。
【0057】
本実施形態においては、ツェナーダイオード5a、5bは、低耐圧FET42、43と同一チップにて形成されるので、作製時に低耐圧FETのゲート電極材料であるポリシリコンで同時に形成することができる。従って、ツェナーダイオード5a、5bの半導体製造プロセスの工程数を削減することができる。また、加工性の良いポリシリコンを材料に使用することにより、単結晶シリコンよりも高精度にツェナー電圧を決定できる。このため、ツェナーダイオード5a、5bを複数直列に接続して、高耐圧のツェナーダイオードアレイを精度良く形成することができる。これにより、ツェナーダイオードアレイの電圧を、高周波振動の振幅電圧以上で、かつ低耐圧FET42、43の耐圧以下に精度よく形成でき、低耐圧FET42、43の耐圧電圧を必要以上に大きくすることなく、低耐圧FET42、43の耐圧保護作用を得ることができる。
【0058】
上述した各種実施形態に係る半導体リレー装置によれば、高耐圧用出力MOSFETと低耐圧用出力MOSFETの2組の出力部4a、4bを、各低耐圧用出力MOSFET42、43の共通のソース端子に関して互いに対称に構成することにより、各高耐圧用出力MOSFET41、44の各ドレインを外部端子45a、45bすることができ、外部端子45a、45bの双方向よりの高電圧を印加可能とし、安全性、利便性が向上すると共に、複数の低容量の低耐圧用出力MOSFET42、43の直列接続により外部端子間容量を小さくして高周波特性を向上することができる。これにより、低容量、高耐圧の特性を兼ね備え、かつ負荷の電位の高低に関係なく双方向の接続が可能な、高性能で、高い安全性と利便性の半導体リレー装置を得ることができる。
【図面の簡単な説明】
【0059】
【図1】本発明の第1の実施形態に係る半導体リレー装置の回路構成図。
【図2】本発明の第2の実施形態に係る半導体リレー装置の回路構成図。
【図3】上記装置における各出力用MOSFETのオン、オフの動作応答時間の相対的遅延関係を示す図。
【図4】(a)は、本発明の第3の実施形態に係る半導体リレー装置の回路構成図、(b)は同装置における各出力用MOSFETのオン、オフの動作応答時間の相対的遅延関係を示す図。
【図5】(a)は、本発明の第4の実施形態に係る半導体リレー装置の回路構成図、(b)は同装置における各出力用MOSFETのオン、オフの動作応答時間の相対的遅延関係を示す図。
【図6】高周波振動の振幅が重畳された負荷電圧の波形を示す図。
【図7】本発明の第6の実施形態に係る半導体リレー装置の回路構成図。
【図8】従来の半導体リレー装置の回路構成図。
【符号の説明】
【0060】
1 発光部
11 発光ダイオード(発光素子)
2 受光部
3 充放電制御回路(電圧制御部)
4 出力部
4a、4b 第1、第2出力部
41、44 高耐圧用出力MOSFET
42、43 低耐圧用出力MOSFET
45a、45b 外部端子
46a、46b、48a、48b ダイオード
47a、47b、49a、49b 抵抗
5a、5b ツェナーダイオード

【特許請求の範囲】
【請求項1】
入力信号に応答して光信号を出力する発光素子を設けた入力部と、前記光信号を受光して所定電圧を発生する受光部と、この所定電圧により出力用MOSFETをスイッチング制御する電圧制御部と、各出力ソースを共通に互いに直列に接続された一対の出力用MOSFETを有する出力部とを備え、前記入力信号に応答して前記出力部を開閉する半導体リレー装置において、
前記受光部、前記電圧制御部及び前記出力部を少なくともそれぞれ各2組備え、
前記電圧制御部は、充放電制御回路で形成され、該充放電制御回路の高電位側と低電位側には、前記各出力用MOSFETのゲートとソースがそれぞれ接続されると共に、
前記一対の出力用MOSFETは、それぞれ高耐圧用出力MOSFETと低耐圧用出力MOSFETで構成され、
前記各低耐圧用出力MOSFETのドレイン間を接続することにより前記2組の出力部を直列接続し、前記各高耐圧用出力MOSFETのドレイン端子を外部端子としたことを特徴とする半導体リレー装置。
【請求項2】
前記入力信号のオフ時に、前記低耐圧用出力MOSFETの動作応答時間を遅く、前記高耐圧用出力MOSFETの動作応答時間を速くすることにより、前記低耐圧用出力MOSFETの立ち下がり速度を高耐圧用出力MOSFETの立ち下がり速度より遅くしたことを特徴とする請求項1に記載の半導体リレー装置。
【請求項3】
前記入力信号のオン時に、前記低耐圧用出力MOSFETの動作応答時間を速く、前記高耐圧用出力MOSFETの動作応答時間を遅くすることにより、前記低耐圧用出力MOSFETの立ち上がり速度を高耐圧用出力MOSFETの立ち上がり速度より速くしたことを特徴とする請求項1に記載の半導体リレー装置。
【請求項4】
前記入力信号のオフ時に、前記低耐圧用出力MOSFETの動作応答時間を遅く、前記高耐圧用出力MOSFETの動作応答時間を速くすることにより、前記低耐圧用出力MOSFETの立ち下がり速度を高耐圧用出力MOSFETの立ち下がり速度より遅くすると共に、前記入力信号のオン時に、前記低耐圧用出力MOSFETの動作応答時間を速く、前記高耐圧用出力MOSFETの動作応答時間を遅くすることにより、前記低耐圧用出力MOSFETの立ち上がり速度を高耐圧用出力MOSFETの立ち上がり速度より速くしたことを特徴とする請求項1に記載の半導体リレー装置。
【請求項5】
前記各低耐圧用出力MOSFETのゲートと前記各充放電制御回路の高電圧側との間にダイオードと抵抗がそれぞれ並列に接続され、前記ダイオードのカソードは前記各低耐圧用出力MOSFETのゲートに接続されていることを特徴とする請求項2に記載の半導体リレー装置。
【請求項6】
前記各高耐圧用出力MOSFETのゲートと前記各充放電制御回路の高電圧側との間にダイオードと抵抗がそれぞれ並列に接続され、該ダイオードのアノードは前記各高耐圧用出力MOSFETのゲートに接続されていることを特徴とする請求項3に記載の半導体リレー装置。
【請求項7】
前記各低耐圧用出力MOSFETのゲートと前記各充放電制御回路の高電圧側との間にダイオードと抵抗がそえぞれ並列に接続され、前記ダイオードのカソードは前記各低耐圧用出力MOSFETのゲートに接続されると共に、前記各高耐圧用出力MOSFETのゲートと前記各充放電制御回路の高電圧側との間にダイオードと抵抗がそれぞれ並列に接続され、該ダイオードのアノードは前記各高耐圧用出力MOSFETのゲートに接続されていることを特徴とする請求項4に記載の半導体リレー装置。
【請求項8】
前記外部端子に接続される負荷電圧が、所定の電圧Va以上において高周波変動し、この高周波変動の最低電位を前記所定の電圧Vaとし、その最高電位を前記電圧Vaに該電圧Vaより小さいある電圧Vbを加えた電圧(Va+Vb)である場合、前記出力部の低耐圧用出力MOSFETが前記電圧Vb以上の耐圧を持つことを特徴とする請求項1乃至請求項7のいずれかに記載の半導体リレー装置。
【請求項9】
前記低耐圧用出力MOSFETのドレイン−ソース間に、該低耐圧用出力MOSFETの耐圧以下の耐圧を持つツェナーダイオードを逆並列に備えていることを特徴とする請求項8に記載の半導体リレー装置。
【請求項10】
前記ツェナーダイオードは前記低耐圧用出力MOSFETと同一チップに形成され、かつ該低耐圧用出力MOSFETのゲート電極材料と同じポリシリコンで形成されていることを特徴とする請求項9に記載の半導体リレー装置。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate

【図7】
image rotate

【図8】
image rotate


【公開番号】特開2007−88550(P2007−88550A)
【公開日】平成19年4月5日(2007.4.5)
【国際特許分類】
【出願番号】特願2005−271559(P2005−271559)
【出願日】平成17年9月20日(2005.9.20)
【出願人】(000005832)松下電工株式会社 (17,916)
【Fターム(参考)】