説明

数値制御工作機械

【課題】テーブル上に治具等を介して取り付けられたワークの実際の三次元の状態を迅速に計測することができる数値制御工作機械を提供する。
【解決手段】工具101の長さ及び径を計測する工具計測センサ104と、ワーク1の三次元的な形状と位置及び向きとをレーザ光等により非接触で計測するワーク計測センサ105と、ワーク計測センサ105からの情報に基づいて、加工開始点の位置及び基準面の傾きを求めた後、入力されている加工プログラムに基づいて、センサ104,105からの情報並びに加工開始点の位置及び基準面の傾きから、ワーク1に対して加工を施すように主軸102等の作動を制御しながら、工具101がワーク1に接触せずに移動する非加工領域に位置しているときに、加工プログラムでの工具101の移動速度よりも速く工具101を移動させるように主軸102等の作動を制御する制御装置106とを備える数値制御工作機械100とした。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、マシニングセンタや横中ぐり盤や門形プラノミラ等のような数値制御工作機械に関する。
【背景技術】
【0002】
マシニングセンタや横中ぐり盤や門形プラノミラ等のような数値制御工作機械においては、加工を行うに先立って、従来、タッチプローブ等の接触式センサを用いて、テーブル上に固定支持されたワークの所定個所の位置等を計測することにより、加工開始点や基準面の傾き等を求めるようにしていた。
【先行技術文献】
【特許文献】
【0003】
【特許文献1】特開平6−055407号公報
【特許文献2】特開2009−163414号公報
【特許文献3】特開2010−108292号公報
【発明の概要】
【発明が解決しようとする課題】
【0004】
ところで、タッチプローブ等の接触式センサを用いてワークの形状を三次元的に計測しようとすると、精度の面から、タッチプローブ等の接触式センサの移動速度(送り速度)をあまり速くすることができず、著しく時間がかかってしまっていた。
【0005】
このようなことから、本発明は、テーブル上に治具等を介して取り付けられたワークの実際の三次元の状態を迅速に計測することができる数値制御工作機械を提供することを目的とする。
【課題を解決するための手段】
【0006】
前述した課題を解決するための、本発明に係る数値制御工作機械は、工具を着脱可能に取り付けられて回転させる主軸と、ワークを固定支持するテーブルと、前記主軸に取り付けられた前記工具の長さ及び径を計測する工具計測手段と、前記テーブル上に固定支持された前記ワークの三次元的な形状と位置及び向きとを非接触で計測するワーク計測手段と、前記ワーク計測手段からの情報に基づいて、加工開始点の位置及び基準面の傾きを求めた後、入力されている加工プログラムに基づいて、前記工具計測手段及び前記ワーク計測手段からの情報並びに前記加工開始点の位置及び前記基準面の傾きから、前記テーブル上の前記ワークに対して加工を施すように前記主軸及び前記テーブルの少なくとも一方の作動を制御しながら、前記工具が前記ワークに接触せずに当該ワークに対して相対的に移動する非加工領域に位置しているときに、当該加工プログラムで規定されている当該工具の相対的な移動速度よりも速い速度で当該工具を当該ワークに対して相対的に移動させるように前記主軸及び前記テーブルの少なくとも一方の作動を制御する制御手段とを備えていることを特徴とする。
【発明の効果】
【0007】
本発明に係る数値制御工作機械によれば、テーブル上に固定支持されたワークの三次元的な形状と位置及び向きとをワーク計測手段により非接触で計測するので、テーブル上に治具等を介して取り付けられたワークの実際の三次元の状態を迅速に計測することができる。
【図面の簡単な説明】
【0008】
【図1】本発明に係る数値制御工作機械の主な実施形態の概略構成図である。
【図2】本発明に係る数値制御工作機械の主な実施形態の要部の制御ブロック図である。
【図3】本発明に係る数値制御工作機械の主な実施形態の要部の制御フロー図である。
【発明を実施するための形態】
【0009】
本発明に係る数値制御工作機械の実施形態を図面に基づいて以下に説明するが、本発明は図面に基づいて説明する実施形態のみに限定されるものではない。
【0010】
[主な実施形態]
本発明に係る数値制御工作機械の主な実施形態を図1〜3に基づいて説明する。
【0011】
図1に示すように、本実施形態に係る数値制御工作機械100は、工具101を着脱可能に取り付けられて回転させる主軸102と、ワーク1を固定支持するテーブル103と、主軸102に取り付けられた工具101の長さ及び径の二次元的な形状を計測する工具計測手段である工具計測センサ104と、テーブル103上に固定支持されたワーク1の治具と併せた三次元的な形状をレーザ光等により非接触で計測するワーク計測手段であるワーク計測センサ105とを備えている。
【0012】
そして、図2に示すように、前記工具計測センサ104及び前記ワーク計測センサ105は、制御手段である制御装置106の入力部に電気的に接続されている。また、制御装置106の入力部には、加工プログラム等の各種の加工条件を入力する入力手段である入力装置107が電気的に接続されている。
【0013】
他方、制御措置106の出力部は、前記主軸102に取り付けられた前記工具101を回転させる駆動モータ108と、前記工具101と前記ワーク1とを相対的にX,Y,Z軸方向へ移動させるように前記主軸102や前記テーブル103を移動させる駆動モータ109〜111と、各種情報を音声や映像等で表示するスピーカやモニタ等の情報表示手段である表示装置112とにそれぞれ電気的に接続しており、当該制御装置106は、前記センサ104,105からの情報及び前記入力装置107から入力された情報に基づいて、前記モータ108〜111の作動を制御すると共に、各種情報を前記表示装置112で表示することができるようになっている(詳細は後述する)。
【0014】
このような本実施形態に係る数値制御工作機械100の作動を次に説明する。
【0015】
まず、入力装置107で加工プログラム等の各種の加工条件を制御装置106に入力し(図3中、S1)、主軸102に工具101が装着されると、前記制御装置106は、当該工具101の長さ及び径の二次元的な外形のサイズを工具計測センサ104で計測するように、前記モータ109〜111を作動させて、当該工具101と当該工具計測センサ104とを相対的にX,Y,Z軸方向へ移動させる(図3中、S2)。
【0016】
これにより、上記制御装置106は、上記工具計測センサ104からの情報に基づいて、主軸端と上記工具101の先端との間の長さや先端側の径等の当該工具101の実際の二次元的な外形サイズを求める。
【0017】
続いて、テーブル103上に治具を介してワーク1が固定支持されると、前記制御装置106は、上記テーブル103上の上記治具と併せたワーク1の三次元的な外形と位置及び向きとを前記ワーク計測センサ105で計測するように、前記モータ109〜111を作動させて、当該ワーク計測センサ105と当該ワーク1とを相対的にX,Y,Z軸方向へ移動させる(図3中、S3)。
【0018】
これにより、上記制御装置106は、上記ワーク計測センサ105からの情報に基づいて、上記テーブル103上の上記治具と併せた上記ワーク1の実際の三次元的な外形と位置及び向きとを求める。
【0019】
次に、前記制御装置106は、上述したようにして求めた上記工具101の実際の外形及び上記ワーク1の実際の外形と位置及び向きとに基づいて、入力された前記加工プログラムと上記ワーク1との適合性を求める。
【0020】
具体的には、前記制御装置106は、まず、上記ワーク1の実際の外形に基づいて、前記入力装置107から入力された加工プログラムで想定しているワークの形状と、テーブル103上の実際のワーク1の形状とを比較して、実施しようとする加工内容と加工を行うワーク1とが適合しているか否かを判断し(図3中、S4)、当該加工プログラムで想定しているワークの形状とテーブル103上の上記ワーク1の形状とが不適合の場合、すなわち、実施しようとする加工内容と加工を行うワーク1とが異なっている場合には、その旨を前記表示装置112に表示し、作業者に警告する(図3中、S5)。
【0021】
上記加工プログラムで想定しているワークの形状とテーブル103上の上記ワーク1の形状とが適合している場合、すなわち、実施しようとする加工内容と加工を行うワーク1とが一致している場合には、前記制御装置106は、次に、上記ワーク1の位置及び向きに基づいて、加工開始点の位置や基準面の傾き等の加工基準値を求める(図3中、S6)。
【0022】
そして、求められた上記加工開始点の位置や上記基準面の傾き等の実際の加工基準値と、入力された前記加工プログラムで想定している加工開始点の位置や基準面の傾き等の想定された加工基準値とを比較して、前記テーブル103上の前記ワーク1の実際の位置や向きが正常な範囲内に適合しているか否かを判断し(図3中、S7)、実際の上記加工基準値と想定された上記加工基準値とが不適合の場合、すなわち、前記テーブル103上の前記ワーク1の実際の位置や向きがずれている場合には、前記制御装置106は、その旨を前記表示装置112に表示し、作業者に警告すると共に、不適合となった当該ワーク1の位置や向きの情報を表示する(図3中、S8)。
【0023】
実際の上記加工基準値と想定された上記加工基準値とが適合する場合、すなわち、前記テーブル103上の前記ワーク1の実際の位置や向きが適合している場合には、前記制御装置106は、入力された前記加工プログラム等の各種の加工条件、計測された工具101の長さ及び径の実際の二次元的な形状、計測されたワーク1の実際の三次元的な形状、求められた加工開始点の位置及び基準面の傾き等の実際の前記加工基準値に基づいて、テーブル103上の治具を含む実際のワーク1に対する加工を目的とする最終形状までシミュレーションで行う(図3中、S9)。
【0024】
このような実際のワーク1の目的とする最終形状までの加工シミュレーションを実施して、以下のような加工不具合の有無を確認する(図3中、S10)。
(1)治具等を含めたワーク1側と送り台(ラム)等の工具101側との干渉の有無。
(2)規定値以上の加工負荷(規定値以上のサイズの取り代)の有無。
(3)ワーク1の取り残しの有無。
【0025】
そして、上記加工不具合を生じる場合には、前記制御装置106は、その旨を前記表示装置112に表示し、作業者に警告すると共に、不具合の内容(箇所や大きさ等)を表示する(図3中、S11)。
【0026】
他方、上記加工不具合がない場合には、前記制御装置106は、上記加工シミュレーションの場合と同様にして、テーブル103上のワーク1に対して実際の加工を施すように前記モータ108〜111の作動制御を開始する(図3中、S12)。
【0027】
そして、前記制御装置106は、上記加工シミュレーションに基づいて実際の加工を行っていき、工具101がワーク1に接触している加工領域のときには(図3中、S13)、前記加工プログラムで規定されている通りに前記主軸102や前記テーブル103を相対的に移動させるように前記モータ109〜111の作動を制御する(図3中、S14)一方、工具101がワーク1に接触せずに移動する非加工領域のときには、前記加工プログラムで規定されている当該工具101の送り速度等の移動速度よりも速い速度で当該工具101を当該ワーク1に対して相対的に移動させるように前記モータ109〜111の作動を制御(オーバライド)する(図3中、S15)。
【0028】
そして、前記加工プログラムが終了することにより(図3中、S16)、上記ワーク1に対する実際の加工が終了する。
【0029】
つまり、本実施形態に係る数値制御工作機械100は、レーザ光等の非接触式で計測するワーク計測センサ105によって、治具等を含めたワーク1の三次元的な実際の形状を求めるようにしたのである。
【0030】
したがって、本実施形態に係る数値制御工作機械100によれば、テーブル103上に治具等を介して取り付けられたワーク1の実際の三次元の状態を迅速に計測することができると共に、さらに、以下のような効果を得ることができる。
【0031】
(1)従来、ワーク1に実際に加工を施す前に、主軸102を逃がして加工プログラムを実施して、ワーク1に対する主軸102の作動位置関係(例えば、干渉の有無、取り代のバラつきの程度、取り残しの有無等)を作業者が目視でチェックして、その結果を実加工の際に反映させるように作業者が調整するいわゆるデバッグ作業を著しく容易化することができるので、作業者の負担を大幅に低減することができると共に、作業者の経験の差によるバラつきをなくすことができる。
【0032】
(2)実加工中の非加工領域のときに、工具101の送り速度等の移動速度がオーバライドされるので、加工時間を大幅に短縮することができる。
【0033】
[他の実施形態]
なお、前述した実施形態においては、ワーク1の三次元的な形状等をレーザ光等で非接触式に計測するワーク計測センサ105を備えるようにした場合について説明したが、これに代えて、他の実施形態として、例えば、ワーク1の三次元的な形状等を撮影するCCDカメラを備えるようにすることも可能である。
【0034】
また、前述した実施形態においては、工具101の長さや径等の形状を計測する工具計測センサ104と、ワーク1の三次元的な形状等を非接触で計測するワーク計測センサ105とをそれぞれ備えるようにしたが、他の実施形態として、例えば、工具計測センサ104とワーク計測センサ105とを兼ねるようにして、工具101の長さや径等の形状を計測すると共に、ワーク1の三次元的な形状等を計測する計測手段を備えるようにすることも可能である。
【0035】
また、前述した実施形態においては、治具等を含めたワーク1側と送り台(ラム)等の工具101側との干渉を実加工前の加工シミュレーションにおいて実施するようにしたが、これに代えて、他の実施形態として、例えば、実加工中において、加工点よりも先の状態(例えば、5秒後)をシミュレーションしながら加工を施し、治具等を含めたワーク1側と送り台(ラム)等の工具101側との干渉を生じることが予測されたときに、制御手段が、その旨を表示手段で表示して、作業者に警告すると共に、干渉する箇所を表示することと同時に、加工を一旦停止するようにする、すなわち、衝突防止機能とすることも可能である(例えば、前記特許文献1等参照)。
【0036】
また、前述した実施形態においては、規定値以上の加工負荷(規定値以上のサイズの取り代)及びワーク1の取り残しの両者の加工不具合の有無を確認する場合について説明したが、ワーク1の製造履歴に伴う精度等の各種条件によっては、規定値以上の加工負荷(規定値以上のサイズの取り代)及びワーク1の取り残しのいずれか一方の加工不具合の有無を確認するだけにすることも可能である。
【0037】
また、本発明は、マシニングセンタや横中ぐり盤や門形プラノミラ等のような数値制御工作機械であれば、前述した実施形態のように適用可能である。
【産業上の利用可能性】
【0038】
本発明に係る数値制御工作機械は、テーブル上に治具等を介して取り付けられたワークの実際の三次元の状態を迅速に計測することができるので、金属加工産業等において、極めて有益に利用することができる。
【符号の説明】
【0039】
1 ワーク
100 数値制御工作機械
101 工具
102 主軸
103 テーブル
104 工具計測センサ
105 ワーク計測センサ
106 制御装置
107 入力装置
108〜111 駆動モータ
112 表示装置

【特許請求の範囲】
【請求項1】
工具を着脱可能に取り付けられて回転させる主軸と、
ワークを固定支持するテーブルと、
前記主軸に取り付けられた前記工具の長さ及び径を計測する工具計測手段と、
前記テーブル上に固定支持された前記ワークの三次元的な形状と位置及び向きとを非接触で計測するワーク計測手段と、
前記ワーク計測手段からの情報に基づいて、加工開始点の位置及び基準面の傾きを求めた後、入力されている加工プログラムに基づいて、前記工具計測手段及び前記ワーク計測手段からの情報並びに前記加工開始点の位置及び前記基準面の傾きから、前記テーブル上の前記ワークに対して加工を施すように前記主軸及び前記テーブルの少なくとも一方の作動を制御しながら、前記工具が前記ワークに接触せずに当該ワークに対して相対的に移動する非加工領域に位置しているときに、当該加工プログラムで規定されている当該工具の相対的な移動速度よりも速い速度で当該工具を当該ワークに対して相対的に移動させるように前記主軸及び前記テーブルの少なくとも一方の作動を制御する制御手段と
を備えていることを特徴とする数値制御工作機械。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate


【公開番号】特開2012−53509(P2012−53509A)
【公開日】平成24年3月15日(2012.3.15)
【国際特許分類】
【出願番号】特願2010−193181(P2010−193181)
【出願日】平成22年8月31日(2010.8.31)
【出願人】(000006208)三菱重工業株式会社 (10,378)
【Fターム(参考)】