説明

直列多重インバータ装置

【課題】系統電圧を検出する検出部と単相インバータユニットの順変換部を制御する制御部との間のデータ伝送時間を短縮することができ、遅延時間の補正や位相差の補正を行うことが可能な直列多重インバータ装置を提供する。
【解決手段】直列多重インバータ装置は、前記各単相インバータユニット1の順変換部2が、120°通流制御を行い、マスタ制御装置5及びスレーブ制御装置8を備えている。マスタ制御装置は、前記各単相インバータユニットの順変換部の交流入力側に接続した系統電圧検出部6及び系統電圧位相同期判定部7を備え、系統電圧位相に同期した同期信号を生成する。スレーブ制御装置は、該マスタ制御装置で生成された前記同期信号が伝送され、伝送された前記同期信号を基に系統電圧と同期した120°通流幅の信号を生成して前記各単相インバータユニットの順変換部のスイッチング動作を制御する。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、複数の単相インバータユニットを直列接続した直列多重インバータ装置に関し、特に回生制御を可能とした直列多重インバータ装置に関する。
【背景技術】
【0002】
一般に、3.3kV、6.6kV、10kVなどの高圧電力を直接受電して交流電動機を制御する場合、直列多重インバータ装置を用いる。この直列多重インバータ装置の従来例は、ファンやポンプなどの負荷の急激な変化が無く、回生機能を必要としない分野を中心に導入されている。しかし、近年、高圧電動機の用途拡大などの要望によれり、直列多重インバータ装置への回生機能の付加が要求されている。
【0003】
この要求に答えるために、回生制御における系統電圧位相とインバータの出力電圧位相の同期を取るようにした図7に示す直列多重インバータ装置が提案されている(例えば、特許文献1参照)。この特許文献1に記載の直列多重インバータ装置は、多重巻線の三相変圧器により構成された入力トランスTrを有し、この入力トランスTrで系統電圧の絶縁と降圧を行う。この入力トランスTrで降圧されたU相、V相及びW相がそれぞれ、各相用の単相インバータユニットU1′〜U6′、V1′〜V6′及びW1′〜W6′に入力される。
【0004】
U相用の単相インバータユニットU1′〜U6′は出力側が直列に接続されている。そして、単相インバータユニットU1′の出力側の一端が抵抗を介して接地され、単相インバータユニットU6′の出力側の他端が交流電動機MのU相電動機巻線に接続されている。
同様に、V相用の単相インバータユニットV1′〜V6′は出力側が直列に接続されている。そして、単相インバータユニットV1′の出力側の一端が抵抗を介して接地され、単相インバータユニットV6′の出力側の他端が交流電動機MのV相電動機巻線に接続されている。
【0005】
さらに、W相用の単相インバータユニットW1′〜W6′は出力側が直列に接続されている。そして、単相インバータユニットW1′の出力側の一端が抵抗を介して接地され、単相インバータユニットW6′の出力側の他端が交流電動機MのW相電動機巻線に接続されている。
各単相インバータユニットU1′〜U6′、V1′〜V6′及びW1′〜W6′の主回路構成は、図8に示すように構成されている。この主回路構成は、順変換部CVとその出力側に接続されたコンデンサCと、逆変換部IVとを備えている。
【0006】
順変換部CVは、スイッチング素子として6つのIGBTを使用し、120°通流制御が行われる。この順変換部CVに入力される系統電圧は、電圧検出回路101で検出され、この電圧検出回路101で検出された系統電圧が各単相インバータユニットに共通のコントローラ102へ伝送される。コントローラ102では、受信した電圧値を基に系統電圧位相と同期した120°通流制御を行うためのゲート信号を生成し、各順方向変換部CVのIGBTへ出力する。
【0007】
このため、交流電動機Mが回生状態となったときには、交流電動機Mで発生した電圧は逆変換部IVのダイオードを通じて一旦直流に変換され、且つコンデンサCにより平滑化された後、順変換部CVのIGBTによって三相交流に逆変換されて交流電源側に回生される。
なお、直列多重インバータ装置の主回路構成のときは、電圧検出回路101は、全ての単相インバータユニットで1つ共用し,その電圧検出回路から各単相インバータユニットへ電圧値を送る。
【先行技術文献】
【特許文献】
【0008】
【特許文献1】特開2006−230027号公報
【発明の概要】
【発明が解決しようとする課題】
【0009】
ところで、上記特許文献1に記載された従来例にあっては、電圧検出回路101で検出した電圧値を各単相インバータユニットのコントローラへ伝送している。このため、データ量に応じて伝送時間が長くなるという未解決の課題がある。
また、電圧値を直接単相インバータユニットへ伝送しているため、系統電圧位相と、同期したゲート信号を生成するには、各単相インバータユニットのコントローラで「電圧検出回路の遅延時間」や「CPUなどの演算遅延時間」を補正する必要があり、機能重複した構成となるという未解決の課題がある。
【0010】
さらに、系統電圧位相と単相インバータユニットを同期させるには、その位相差の情報、あるいは入力電圧位相の情報が必要となり、特許文献1に記載された構成では、同期を実現することができないという未解決の課題がある。
そこで、本発明は、上記従来例の未解決の課題に着目してなされたものであり、系統電圧を検出する検出部と単相インバータユニットの順変換部を制御する制御部との間のデータ伝送時間を短縮することができ、遅延時間の補正や位相差の補正を行うことが可能な直列多重インバータ装置を提供することを目的としている。
【課題を解決するための手段】
【0011】
上記目的を達成するために、本発明に係る直列多重インバータ装置の第1の態様は、順変換部及び逆変換部を有する複数の単相インバータユニットの出力側を直列に接続し、各単相インバータユニットの順変換部の入力側に入力トランスを介してそれぞれの交流電力を入力する直列多重インバータ装置である。この直列多重インバータ装置は、前記各単相インバータユニットの順変換部は、120°通流制御を行い、マスタ制御装置及びスレーブ制御装置を備えている。マスタ制御装置は、前記各単相インバータユニットの順変換部の交流入力側に接続した系統電圧検出部及び系統電圧位相同期判定部を備え、系統電圧位相に同期した同期信号を生成する。スレーブ制御装置は、該マスタ制御装置で生成された前記同期信号が伝送され、伝送された前記同期信号を基に系統電圧と同期した120°通流幅の信号を生成して前記各単相インバータユニットの順変換部のスイッチング動作を制御する。
【0012】
また、本発明に係る直列多重インバータ装置の第2の態様は、順変換部及び逆変換部を有する複数の単相インバータユニットの出力側を直列に接続し、各単相インバータユニットの順変換部の入力側に入力トランスを介してそれぞれの交流電力を入力する直列多重インバータ装置である。この直列多重インバータ装置は1つのマスタ制御装置と前記各単相インバータユニットを個別に制御する複数のスレーブ制御装置とを備えている。マスタ制御装置は、前記入力トランスの系統側の系統電圧を検出する系統電圧検出部及び系統電圧位相同期判定部を備え、系統電圧位相に同期した同期信号を生成する。複数のスレーブ装置は、マスタ制御装置から出力される前記同期信号が個別に入力されて、前記系統電圧に同期した120°通流幅信号を生成して前記各単相インバータユニットの順変換部のスイッチング動作を個別に制御する。
【0013】
また、本発明に係る直列多重インバータ装置の第3の態様は、前記マスタ装置が、前記系統電圧に同期した同期信号を、系統電圧検出遅れ時間、演算遅延時間などの遅延時間分前の時点で生成し、前記系統電圧位相と前記単相インバータユニットの出力電圧位相とを同期させる。
また、本発明に係る直列多重インバータ装置の第4の態様は、前記マスタ制御装置が、系統電圧位相と前記単相インバータユニットの入力電圧位相とが位相差を有する場合、当該位相差情報を予め前記スレーブ制御装置へ伝送し、当該スレーブ制御装置は、伝送された前記同期信号に対して前記位相差を補正した120°通流幅信号を生成する。
【発明の効果】
【0014】
本発明によれば、マスタ制御装置が系統電圧検出部及び系統電圧位相同期判定部を備え、系統電圧位相同期判定部で生成した同期信号を単相インバータユニットの順変換部を120°通流制御するスレーブ制御装置に伝送するので、同期信号を例えは1ビットで構成することができ、伝送時間を短縮することができる。
このように、マスタ制御装置及びスレーブ制御装置間で同期信号を伝送するので、同期信号の出力タイミングを調整することが可能となり、電圧検出回路の遅延時間やCPUなどの演算遅延時間の調整が可能となるとともに、系統電圧位相と単相インバータユニットの入力電圧位相の位相差を調整することが可能となる。
【図面の簡単な説明】
【0015】
【図1】本発明に係る直列多重インバータ装置の第1の実施形態を示すブロック図である。
【図2】本発明の第1の実施形態の動作の説明に供するタイムチャートである。
【図3】本発明の第2の実施形態を示すブロック図である。
【図4】本発明の第3の実施形態を示すブロック図である。
【図5】本発明の第3の実施形態の動作の説明に供するタイムチャートである。
【図6】本発明の第4の実施形態の動作の説明に供するタイムチャートである。
【図7】従来の直列多重インバータ装置を示すブロック図である。
【図8】図7の単相インバータユニットの具体的構成を示す回路図である。
【発明を実施するための形態】
【0016】
以下、本発明の実施の形態を図面について説明する。
図1は本発明に係る直列多重インバータ装置に適用し得る単相インバータユニット及びその制御回路を示すブロック図である。
図中、1は単相インバータユニットである。この単相インバータユニット1は、前述した図7における単相インバータユニットU1′〜U6′、V1′〜V6′及びW1′〜W6′を構成するものであり、図8に相当するものである。
【0017】
単相インバータユニット1は、3相交流を直流に変換する順変換部2と、この順変換部2から出力される直流電力を平滑化するコンデンサ3と、このコンデンサ3の両端間に並列に接続された逆変換部4とを備えている。
順変換部2は、正極側ラインLp及び負極側ラインLn間に接続された例えばIGBTで構成される6個の半導体スイッチング素子Q1〜Q6を有する。ここで、半導体スイッチング素子Q1及びQ2は正極側ラインLp及び負極側ラインLn間に直列に接続され、半導体スイッチング素子Q3及びQ4の直列回路と半導体スイッチング素子Q5及びQ6の直列回路とが正極側ラインLp及び負極側ラインLn間に半導体スイッチング素子Q1及びQ2と並列に接続されている。
【0018】
また、逆変換部4は、正極側ラインLp及び負極側ラインLn間に接続された例えばIGBTで構成される4個の半導体スイッチング素子Q7〜Q10を有する。ここで、半導体スイッチング素子Q7及びQ8は正極側ラインLp及び負極側ラインLn間に直列に接続されている。また、半導体スイッチング素子Q9及びQ10も正極側ラインLp及び負極側ラインLn間に直列に接続されている。そして、半導体スイッチング素子Q7及びQ8の接続点が直列に接続された一方の側の単相インバータユニット1の他方の出力端子に、半導体スイッチング素子Q9及びQ10の接続点が直列に接続された他方の側の単相インバータユニット1の一方の出力端子に接続されている。
【0019】
そして、順変換部2の半導体スイッチング素子Q1及びQ2間の接続点に入力トランスの出力側に接続されたU相ラインLuが接続されている。また、半導体スイッチング素子Q3及びQ4間の接続点に入力トランスの出力側に接続されたV相ラインLvが接続されている。さらに、半導体スイッチング素子Q5及びQ6間の接続点に入力トランスの出力側に接続されたW相ラインLwが接続されている。
【0020】
また、入力トランス及び順変換部2間のU相ラインLu、V相ラインLv及びW相ラインLwがマスタ制御装置5に接続されている。このマスタ制御装置5は、U相ラインLuの系統電圧Vu、V相ラインLvの系統電圧Vv及びW相ラインLwの系統電圧Vwを検出する系統電圧検出部6と、この系統電圧検出部6で検出した各系統電圧Vu、Vv及びVwを基に同期信号Syを生成する系統電圧位相同期判定部7とを備えている。
【0021】
ここで、系統電圧位相同期判定部7は、入力される系統電圧Vu、Vv及びVwが負値から正値に反転する零クロス点を検出し、零クロス点を検出したときに、所定幅の同期信号Syをスレーブ制御装置8へ出力する。
このスレーブ制御装置8は、マスタ制御装置5から入力される同期信号Syの立ち上がりで0°にリセットされる360°カウンタ9を備えており、この360°カウンタ9のカウント値に基づいて前述した単相インバータユニット1の順変換部2の半導体スイッチング素子Q1〜Q6を120°通流制御する個別のゲート信号を生成する。すなわち、スレーブ制御装置8は、360°カウンタ9のカウント値が30°〜150°の区間でオン状態となる半導体スイッチング素子Q1のゲートを駆動するU相ゲート信号を形成する。
【0022】
すなわち、スレーブ制御装置8は、360°カウンタ9のカウント値が150°〜270°の区間でオン状態となる半導体スイッチング素子Q3のゲートを駆動するV相ゲート信号を形成する。また、スレーブ制御装置8は、360°カウンタ9のカウント値が270°〜30°の区間でオン状態となる半導体スイッチング素子Q5のゲートを駆動するW相ゲート信号を生成する。
【0023】
同様に、スレーブ制御装置8は、360°カウンタ9のカウント値が210°〜330°の区間でオン状態となる半導体スイッチング素子Q2のゲートを駆動するX相ゲート信号を生成する。また、スレーブ制御装置8は、360°カウンタ9のカウント値が330°〜90°の区間でオン状態となる半導体スイッチング素子Q4のゲートを駆動するY相ゲート信号を生成する。また、スレーブ制御装置8は、360°カウンタ9のカウント値が90°〜210°の区間でオン状態となる半導体スイッチング素子Q6のゲートを駆動するZ相ゲート信号を生成する。
【0024】
そして、スレーブ制御装置8で生成されたU相、V相及びW相ゲート信号が単相インバータユニット1の順変換部2の半導体スイッチング素子Q1、Q3及びQ5のゲートに供給される。同様に、スレーブ制御装置8で生成されたX相、Y相及びZ相ゲート信号が単相インバータユニット1の順変換部2の半導体スイッチング素子Q2、Q4及びQ6のゲートに供給される。
【0025】
次に、上記実施形態の動作を図2に示すタイムチャートを伴って説明する。
今、U相ラインLuのU相系統電圧Vuを例に取って説明する。
このU相系統電圧Vuは、図2(a)に示すように、例えば0°〜180°の間で正値となり、180°〜360°(0°)の間で負値となる正弦波信号となる。
このため、U相系統電圧Vuがマスタ制御装置5の系統電圧検出部6で検出されると、このU相系統電圧Vuが系統電圧位相同期判定部7に供給される。このため、系統電圧位相同期判定部7でU相系統電圧Vuが負値から正値に反転する点すなわち、零クロス点を検出して、図2(b)に示すように、零クロス点で立ち上がり、比較的短い所定時間オン状態を継続してからオフ状態に復帰する同期信号Syを生成する。
【0026】
そして、系統電圧位相同期判定部7で生成された同期信号Syがスレーブ制御装置8に伝送される。このスレーブ制御装置8では、同期信号Syの立ち上がりで360°カウンタ9が0°にリセットされて、図2(c)に示すように、0°からカウントを開始する。このため、スレーブ制御装置8では、360°カウンタ9のカウント値に応じて図2(d)〜(i)に示すU相系統電圧Vuに同期したU相〜Z相ゲート信号を生成する。そして、生成したU相、V相及びW相ゲート信号を単相インバータユニット1の順変換部2の半導体スイッチング素子Q1、Q3及びQ5のゲートに供給する。また、生成したX相、Y相及びZ相ゲート信号を単相インバータユニット1の順変換部2の半導体スイッチング素子Q2、Q4及びQ6のゲートに供給する。このため、順変換部2がU相系統電圧Vuに同期した120°通流制御されて、3相交流電力を直流電力に変換する。
【0027】
そして、この順変換部2から出力される直流電力がコンデンサ3で平滑化されてから逆変換部4に供給されることにより、逆変換部4の半導体スイッチング素子Q7及びQ8の接続点と半導体スイッチング素子Q9及びQ10の接続点との間に系統電圧Vuに位相同期した単相交流が出力される。
このように、単相インバータユニット1の順変換部2がU相系統電圧Vuに同期して120°通流制御されているので、電動機Mが回生状態となったときに、電動機Mで発生した電圧は逆変換部4のダイオードを通じて一旦直流に変換され、且つコンデンサ3で平滑された後に順変換部2の各半導体スイッチング素子Q1〜Q6によって三相交流に逆変換されて交流電源側に回生される。
【0028】
このように、上記第1の実施形態によると、単相インバータユニット1に入力トランス側から供給される系統電圧Vu〜Vwをマスタ制御装置5の系統電圧検出部6で検出し、検出した系統電圧Vuを系統電圧位相同期判定部7に供給して、系統電圧Vuの零クロス点を検出して同期信号Syを生成する。そして、生成した同期信号Syをスレーブ制御装置8に供給して360°カウンタ9を0°にリセットすることにより、系統電圧Vuに同期したU相〜Z相ゲート信号を生成する。生成したU相〜Z相ゲート信号を単相インバータユニット1の順変換部2の各半導体スイッチング素子Q1〜Q6のゲートに供給するので、順変換部2を系統電圧に位相同期したゲート信号で120°通流制御することができる。
【0029】
このとき、マスタ制御装置5及びスレーブ制御装置8が一対一であり、両者間の信号の伝送が1ビットの同期信号Syで済むことから、伝送時間を短縮することができるとともに、系統電圧の位相に同期したゲート駆動信号を生成して、系統電圧位相と単相インバータユニット1の順変換部2の120°通流制御を正確に行うことができる。
【0030】
次に、本発明の第2の実施形態を図3について説明する。
この第2の実施形態では、各単相インバータユニット1に入力される入力トランスTrからの系統電圧には位相ずれを生じないので、1つのマスタ制御装置5で複数のスレーブ制御装置8を同期制御するようにしたものである。
【0031】
すなわち、第2の実施形態では、図3に示すように、入力トランスTrの入力側に系統電力源10から供給される系統電圧Vu〜Vwを共通のマスタ制御装置5に入力する。このマスタ制御装置5は前述した第1の実施形態と同様に系統電圧検出部6及び系統電圧位相同期判定部7を備えている。そして、系統電圧位相同期判定部7から出力される系統電圧Vu〜Vwに同期した同期信号Syが、入力トランスTrの出力側に接続された各単相インバータユニットU1〜U3、V1〜V3及びW1〜W3の順変換部2を個別に制御するスレーブ制御装置SCu1〜SCu3、SCv1〜SCv3及びSCw1〜SCw3に伝送される。
【0032】
この第2の実施形態では、共通のマスタ制御装置5から出力される同期信号Syを各単相インバータユニットU1〜U3、V1〜V3及びW1〜W3の順変換部2を個別に制御するスレーブ制御装置SCu1〜SCu3、SCv1〜SCv3及びSCw1〜SCw3に伝送する。このため、マスタ制御装置5から各スレーブ制御装置SCu1〜SCu3、SCv1〜SCv3及びSCw1〜SCw3に伝送する同期信号Syが1ビットで済むので、前述した第1の実施形態と同様に伝送時間を短縮することができる。しかも、前述した第1の実施形態では、マスタ制御装置5を各単相インバータユニットと同数設ける必要があるが、第2の実施形態では共通の1つのマスタ制御装置5を設けるだけでよい。このため、第2の実施形態ではマスタ制御装置5の数を減少させてコストを低減することができるとともに、全体構成を小型化することができる。
【0033】
次に、本発明の第3の実施形態を図4について説明する。
この第3の実施形態では、マスタ制御装置での遅延時間を考慮して正確な同期信号を生成するようにしたものである。
すなわち、第3の実施形態では、図4及び図5に示すように、上述した第2の実施形態において、マスタ制御装置5に系統電圧検出部6及びこの系統電圧検出部6で検出した系統電圧をもとに遅延時間を考慮した同期信号を生成する同期信号生成部11が設けられている。
【0034】
この同期信号生成部11は、マスタ制御装置5の系統電圧検出部6で系統電圧を検出する際の遅延時間τdと、マスタ制御装置5に含まれるCPUなどの演算遅延時間τcとで生じる遅延時間τだけ同期信号Syを早めに生成するように構成されている。すなわち、同期信号生成部11では、上述した遅延時間τは設計段階で求めることができるので、同期信号Syより遅延時間τだけ前に補正同期信号Syaを生成する。具体的には、下記(1)式に示す電圧閾値Vthを基準として、その電圧閾値VthをU相系統電圧値が下回っている状態から上回る状態となった瞬間に補正同期信号Syaを発生させる。
Vth=−Vp×sin〔{(τd+τc)/T}×360°〕 …………(1)
ここで、Vpは系統電圧ピーク値〔V〕、Tは系統周期〔s〕である。
【0035】
この第3の実施形態によると、図5(a)に示すように、同期信号生成部11で上記(1)式によって算出される電圧閾値Vthを設定しておく。この状態で、系統電圧検出部6で検出されるU相系統電圧Vuが負側のピーク値に向かって減少して時点t1で電圧閾値Vthを下回ってから負側のピーク値を越えて時点t2で電圧閾値Vthを上回ると、その瞬間に図5(c)に示すように補正同期信号Syaを出力する。
【0036】
このときの補正同期信号Syaは、前述した第1の実施形態におけるU相系統電圧Vuが零クロス点である時点t3で発生する図5(b)に示す同期信号Syに対して系統電圧検出部6での遅延時間τdと演算遅延時間τcを加算した遅延時間τ分だけ先行して早めに生成される。
このとき、系統電圧検出部6で検出された検出電圧Vuは図5(a)で実線図示のように、点線図示の実際の系統電圧Vurに対して遅延時間τだけ遅れているので、補正同期信号Syaを実際の系統電圧Vurの零クロス点に一致させることができ、正確な同期信号を生成することができる。
【0037】
そして、生成された補正同期信号Syaが各スレーブ制御装置SCu1〜SCu3、SCv1〜SCv3及びSCw1〜SCw3に伝送される。このため、この補正同期信号Syaに基づいて各スレーブ制御装置SCu1〜SCu3、SCv1〜SCv3及びSCw1〜SCw3で各単相インバータユニットU1〜U3、V1〜V3及びW1〜W3の順変換部2に対するU相〜Z相ゲート信号を生成する。これらU相〜Z相ゲート信号によって各単相インバータユニットU1〜U3、V1〜V3及びW1〜W3の順変換部2が実際の系統電圧に位相同期した120°通流制御される。
【0038】
次に、本発明の第4の実施形態を図6について説明する。
この第4の実施形態は、系統電圧に対して単相インバータユニット1に入力される入力電圧位相に位相差を生じている場合を考慮したものである。
系統電圧位相に対する単相インバータユニット1の入力電圧位相の位相差Hdは、単相インバータユニット1の主回路の設計段階で求めることができる。このため、上述した第2の実施形態の構成において、マスタ制御装置5に、予め系統電圧位相に対する単相インバータユニット1の入力電圧位相の位相差Hdを設定しておく。そして、マスタ制御装置5で、直列多重インバータ装置を駆動開始する際に、マスタ制御装置5から位相差Hdを各スレーブ制御装置SCu1〜SCu3、SCv1〜SCv3及びSCw1〜SCw3にシリアル伝送によって送信する。
【0039】
スレーブ制御装置SCu1〜SCu3、SCv1〜SCv3及びSCw1〜SCw3では、マスタ制御装置5から位相差Hdを受信すると、内蔵する360°カウンタ9のカウント値と比較してU相〜Z相ゲート駆動信号を生成する値を位相差Hdだけ補正する。これにより、単相インバータユニット1の入力電圧位相と同期した120°のゲート駆動信号を生成することができる。
【0040】
次に、上記第4の実施形態の動作を、図6(a)に示すように、U相系統電圧Vuに対して単相インバータユニット1の入力電圧Vuiに30°の位相遅れが生じている場合について説明する。
この場合に、直列多重インバータ装置を駆動開始すると、先ず、マスタ制御装置5から各スレーブ制御装置SCu1〜SCu3、SCv1〜SCv3及びSCw1〜SCw3に対して、位相差Hd(=30°)がシリアル伝送で送信される。このため、各スレーブ制御装置SCu1〜SCu3、SCv1〜SCv3及びSCw1〜SCw3では、位相差Hd(=30°)だけ、内蔵する360°カウンタ9のカウント値と比較する値を補正する。
【0041】
このため、U相系統電圧Vuが図6(a)で実線図示のように変化し、時点t11で負値から正値に反転する零クロス点となると、マスタ制御装置5から図6(b)に示す同期信号Syが各スレーブ制御装置SCu1〜SCu3、SCv1〜SCv3及びSCw1〜SCw3に伝送される。
このため、各スレーブ制御装置SCu1〜SCu3、SCv1〜SCv3及びSCw1〜SCw3では、前述した第2の実施形態と同様に、同期信号Syを受信した時点で360°カウンタ9が0°にリセットされてこの360°カウンタ9が0°からカウントを開始する。
【0042】
このとき、前述した第2の実施形態では、360°カウンタ9のカウント値が30°となった時点で図6(d)に示すように、U相ゲート信号がオン状態に反転し、その後、カウント値が150°となった時点でオフ状態に復帰する。
しかしながら、本実施形態では、360°カウンタ9と比較する値が位相差Hd(=30°)だけ補正されているので、図6(e)に示すように、360°カウンタ9のカウント値が60°となった時点でU相ゲート信号がオン状態に反転し、その後、カウント値が180°となった時点でオフ状態に復帰する。
【0043】
したがって、位相差Hd分だけ位相が遅れたU相ゲート信号を生成することができる。同様に、V相〜Z相ゲート信号についても位相差Hd分だけ位相が遅れた信号とすることができる。そして、位相が遅れたU相〜Z相ゲート信号が各単相インバータユニット1の順変換部2の半導体スイッチング素子Q1〜Q6に供給されるので、各単相インバータユニット1の順変換部2で位相遅れを生じている入力電圧Vuiに同期した120°通流制御を行うことができる。
【0044】
なお、上記第4の実施形態においては、各単相インバータユニット1の入力電圧Vuiの位相差Hdが同一である場合について説明したが、これに限定されるものではなく、各単相インバータユニット1の入力電圧Vuiの位相差Hdが異なる場合には、直列多重インバータ装置の駆動開始時にマスタ制御装置5から各スレーブ制御装置SCu1〜SCu3、SCv1〜SCv3及びSCw1〜SCw3に個別の位相差Hdを送信するようにすればよい。
また、上記第3及び第4の実施形態においては、前述した第2の実施形態の構成を適用した場合について説明したが、これに限定されるものではなく、前述した第1の実施形態の構成にも適用することができるものである。
【符号の説明】
【0045】
1…単相インバータユニット、2…順変換部、3…コンデンサ、4…逆変換部、5…マスタ制御装置、6…系統位相電圧検出部、7…系統電圧位相同期判定部、8…スレーブ制御装置、9…360°カウンタ、SCu1〜SCu3、SCv1〜SCv3、SCw1〜SCw…スレーブ制御装置、11…同期信号生成部

【特許請求の範囲】
【請求項1】
順変換部及び逆変換部を有する複数の単相インバータユニットの出力側を直列に接続し、各単相インバータユニットの順変換部の入力側に入力トランスを介してそれぞれの交流電力を入力する直列多重インバータ装置であって、
前記各単相インバータユニットの順変換部は、120°通流制御を行い、
前記各単相インバータユニットの順変換部の交流入力側に接続した系統電圧検出部及び系統電圧位相同期判定部を備え、系統電圧位相に同期した同期信号を生成するマスタ制御装置と、
該マスタ制御装置で生成された前記同期信号が伝送され、伝送された前記同期信号を基に系統電圧と同期した120°通流幅の信号を生成して前記各単相インバータユニットの順変換部のスイッチング動作を制御するスレーブ制御装置と
を備えたことを特徴とする直列多重インバータ装置。
【請求項2】
順変換部及び逆変換部を有する複数の単相インバータユニットの出力側を直列に接続し、各単相インバータユニットの順変換部の入力側に入力トランスを介してそれぞれの交流電力を入力する直列多重インバータ装置であって、
前記入力トランスの系統側の系統電圧を検出する系統電圧検出部及び系統電圧位相同期判定部を備え、系統電圧位相に同期した同期信号を生成するマスタ制御装置と、該マスタ制御装置から出力される前記同期信号が個別に入力されて、前記系統電圧に同期した120°通流幅信号を生成して前記各単相インバータユニットの順変換部のスイッチング動作を個別に制御する複数のスレーブ装置と
を備えていることを特徴とする直列多重インバータ装置。
【請求項3】
前記マスタ装置は、前記系統電圧に同期した同期信号を、系統電圧検出遅れ時間、演算遅延時間などの遅延時間分前の時点で生成し、前記系統電圧位相と前記単相インバータユニットの出力電圧位相とを同期させることを特徴とする請求項1又は2に記載の直列多重インバータ装置。
【請求項4】
前記マスタ制御装置は、系統電圧位相と前記単相インバータユニットの入力電圧位相とが位相差を有する場合、当該位相差情報を予め前記スレーブ制御装置へ伝送し、当該スレーブ制御装置は、伝送された前記同期信号に対して前記位相差を補正した120°通流幅信号を生成することを特徴とする請求項1乃至3の何れか1項に記載の直列多重インバータ装置。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate

【図7】
image rotate

【図8】
image rotate


【公開番号】特開2013−90358(P2013−90358A)
【公開日】平成25年5月13日(2013.5.13)
【国際特許分類】
【出願番号】特願2011−225918(P2011−225918)
【出願日】平成23年10月13日(2011.10.13)
【出願人】(000005234)富士電機株式会社 (3,146)
【Fターム(参考)】