説明

Fターム[3G301MA20]の内容

内燃機関に供給する空気・燃料の電気的制御 (170,689) | 制御量(燃料噴射) (15,919) | 燃料噴射時期 (2,831) | 噴射終了時期 (78)

Fターム[3G301MA20]に分類される特許

1 - 20 / 78


【課題】低温時において放電スイッチ10のオフ後に生じる放電電流のオーバーシュート時の最大値が低下することを抑える。
【解決手段】コンパレータ43は、放電電流が閾値を越えると、ローレベル信号をANDゲート45に出力する。このため、ANDゲート45がローレベル信号を放電スイッチ10に出力するので、放電スイッチ10がオフする。アルミ電解コンデンサ20が常温であるとき切替スイッチ46の設定により、閾値を狙い値I1に設定し、アルミ電解コンデンサ20が低温であるとき切替スイッチ46の設定により、閾値を放電電流の狙い値I2に設定する。狙い値I2は、狙い値I1に補正値ΔIを加えた値である。補正値ΔIは、低温時の放電スイッチ10のオフ後の放電電流の最大値を、常温時の放電スイッチ10のオフ後の放電電流の最大値VP2に近づけるように設定されている。 (もっと読む)


【課題】触媒での排気浄化を良好に行いつつ、ドライバビリティや騒音の悪化を防止する。
【解決手段】プレ噴射への配分割合ratioを1.0とし補正後プレ噴射量Qpmodを算出する(S10)。補正後プレ噴射量Qpmodがプレ単独補正下限Qpsminより大きければ、プレ噴射への配分割合ratioを1.0とし、補正後メイン噴射量Qmmodを補正前メイン噴射量Qmとする(S12,S14-S16)。プレ単独補正下限Qpsmin以下であれば、補正後プレ噴射量Qpmodを算出する(S12,S18)。プレ噴射量下限Qpminより大きければ、補正後メイン噴射量Qmmodを算出する(S20,S22)。プレ噴射量下限Qpmin以下であれば、補正後プレ噴射量Qpmodをプレ噴射量下限Qpminとし、プレ噴射への配分割合ratioと補正後メイン噴射量Qmmodを算出する(S20,S24-S26)。 (もっと読む)


【課題】マルチ噴射とレートシェイプ噴射を組み合わせて、最適燃料噴射率波形を算出し、最適燃料噴射率波形に基づいて燃料を噴射して、燃費、排出ガス、及び燃焼音を同時に改善することができる燃料噴射装置の制御方法、内燃機関、及びそれを搭載した車両を提供する。
【解決手段】ディーゼルエンジンの運転条件、気筒内へ吸入される燃料の条件、及び使用燃料の性状に応じて、予めパイロット噴射の回数と噴射量、レートシェイプ噴射の回数と噴射量、及び、ポスト噴射の回数と噴射量を設定して、熱効率を最大、排出ガス成分を最小、及び燃焼音を最小とする最適噴射形態10を算出し、その最適噴射形態10に基づいて2回以上の噴射期間中に噴射率を変化させるレートシェイプ噴射12aと12bを行う。 (もっと読む)


【課題】燃料噴霧と空気との混合性を高め、減速時の運転性(トルクショック),燃費,排気エミッションを改善する。
【解決手段】気筒毎に分岐された一方の吸気ポートに配置された第1燃料噴射弁からの燃料噴射の開始時期を、吸入空気がシリンダに導入されるタイミングで燃料噴霧がシリンダに導入されるように設定し、分岐された他方の吸気ポートに配置された第2燃料噴射弁からの燃料噴射の開始時期を、第1燃料噴射弁の噴射終了に同期させて設定し、これら設定された噴射開始タイミングで、第1燃料噴射弁および第2燃料噴射弁から燃料噴射を開始する。 (もっと読む)


【課題】インジェクタの動作を制御する燃料噴射制御装置において、インジェクタの駆動が正常に行われない異常が生じた場合にその異常の具体的内容を判断できるようにする。
【解決手段】EDU100は、エンジンECU130からの駆動信号IJTのON期間中にインジェクタへの通電を行って燃料噴射させる。また、EDU100は、インジェクタの通電電流を検出し、通電検出時はON、通電の非検出時はOFFとなるような通電検出信号INJFをエンジンECU130へ出力する。エンジンECU100のCPU11は、自身が生成した噴射指令TQと、その噴射指令TQに対してEDU100から入力された通電検出信号INJFとを波形比較し、その比較結果に基づいて、燃料噴射が正常か否か判断する。また、異常状態である場合には、その波形比較結果に基づき、異常の具体的内容(噴射開始タイミングの異常、噴射時間の異常、噴射回数の異常)まで判断する。 (もっと読む)


【課題】本発明は、エンジンの運転状態に応じて必要量の燃料を燃焼室内に確実に導入することのできる内燃機関の燃料噴射制御装置を提供する。
【解決手段】エンジンの運転状態に基づき燃料噴射割合を決定し(S10,S12)、燃料噴射時期及びエンジン回転速度に基づき吸気行程噴射モードの付着率Kstick_intと気化率Kevapo_intとを算出し(S14,S16)、更にエンジンの冷却水温度に基づき排気行程噴射モードの付着率Kstick_exhと気化率Kevapo_exhとを算出する(S18,S20)。そして付着率Kstick_intと気化率Kevapo_intと燃料噴射割合とを考慮して吸気行程噴射モードの燃料噴射量Qn_intを、付着率Kstick_exhと気化率Kevapo_exhと燃料噴射割合とを考慮して排気行程噴射モードの燃料噴射量Qn_exhをそれぞれ決定する(S22,S24)。そして、燃料噴射量Qn_int,Qn_exhより燃料噴射量Qnを決定する(S26)。 (もっと読む)


【課題】エミッション性の悪化や異常燃焼の発生を伴わず、しかも熱効率に優れた燃焼を幅広い負荷域に亘って行う。
【解決手段】エンジン低速域における所定の負荷域(A2)では、インジェクタ21から複数回に分けて噴射された燃料に基づき燃焼室6の異なる場所に形成された混合気X1,X2をそれぞれ自着火により燃焼させる多段CIモードを実行する。一方、この多段CIモードの実行領域よりも高負荷側の領域(A4)では、30MPa以上の噴射圧力でインジェクタ21から燃料を噴射させる燃料噴射P4,P5と、点火プラグ20による火花点火とを、圧縮行程後期から膨張行程初期までの期間内に実行することにより、燃料噴射P4,P5に基づく混合気を、圧縮上死点を所定期間以上過ぎてから火炎伝播により急速に燃焼させる急速リタードSIモードを実行する。 (もっと読む)


【課題】本発明は、内燃機関の制御装置に関し、プレイグの発生を良好に回避可能な内燃機関の制御装置を提供することを目的とする。
【解決手段】図4に示すルーチンでは、プレイグ抑制噴射の終了時期CAed(m)と、プレイグ抑制噴射の終了限界時期CAlmt(m)との差ΔCAが算出され(ステップ120)、このΔCAについて、ΔCA≦0となるか否かが判定される(ステップ130)。ΔCA≦0の場合には、次回のプレイグ抑制噴射の開始時期CAst(m+1)がΔCAだけ遅角側に設定される(ステップ140)。ΔCA>0の場合には、不足分の噴射量ΔQが算出され(ステップ150)、この噴射量ΔQが次回の目標噴射量Qt(m+1)に加算され(ステップ160)、次回のプレイグ抑制噴射の開始時期CAst(m+1)がΔCA×2だけ進角側に設定される(ステップ170)。 (もっと読む)


【課題】本発明は、内燃機関の制御装置に関し、プレイグの発生を良好に回避可能な内燃機関の制御装置を提供することを目的とする。
【解決手段】図4に示すルーチンでは、先ず、プレイグ抑制噴射の開始時期CAst(k)が設定される(ステップ100)。続いて、インジェクタ14の追加駆動が開始され、筒内圧Pcylと燃圧Pとの差圧ΔPから、噴射流量Qが演算される(ステップ110)。続いて、噴射流量Qの演算値が積算され、実噴射量Qr(k)が算出される(ステップ120)。続いて、算出した実噴射量Qr(k)が目標噴射量Qt(k)よりも大きいか否かが判定される(ステップ130)。実噴射量Qr(k)が目標噴射量Qt(k)よりも大きいと判定された場合には、インジェクタ14の追加駆動が停止される(ステップ140)。 (もっと読む)


【課題】PMの低減と、所望の量の燃料の内燃機関への供給を両立可能な内燃機関の燃料噴射制御装置および燃料噴射制御方法を提供する。
【解決手段】燃料噴射制御装置は、PMを低減可能な燃料の噴射期間を規定する噴射開始限界時期SOILMTおよび噴射終了限界時期EOILMTと目標噴射期間TIOBJを算出し(ステップ1、2)、TIOBJで規定される量の燃料の噴射をEOILMTに終了可能な燃料の噴射開始時期である第1暫定噴射開始時期SOIT1と、検出された内燃機関の運転状態NE、GAIRに応じた設定噴射開始時期SOISETのうちの早い方を、第2暫定噴射開始時期SOIT2として設定し(ステップ5〜7)、SOIT2とSOILMTのうちの遅い方を、目標噴射開始時期SOIOBJとして設定し(ステップ8〜10)、TIOBJおよびSOIOBJに基づいて、燃料噴射弁による燃料の噴射動作を制御する(ステップ11)。 (もっと読む)


【課題】DPF再生時に行うレイトポスト噴射による燃料が、吸気バルブを排気行程時に一時小リフトさせる吸気バルブによる内部EGRを行う内部EGR装置によって、再度燃焼室に戻らないようにして、エンジンのトルク変動を抑制して、良好なドライバビリティと効率的なDPF再生を両立させたディーゼルエンジンのトルク変動抑制制御装置を提供する。
【解決手段】排ガス中のディーゼル排気微粒子を捕捉するDPF装置を再生するためレイトポスト噴射を行うと共に、排気行程時一時小リフトさせる吸気弁によって内部EGRを行う内部EGR装置を備えたディーゼルエンジンのトルク変動抑制制御方法において、レイトポスト噴射をディーゼルエンジンの排気バルブ開放期間中の初期に実施すると共に、レイトポスト噴射終了期間と内部EGR装置の吸気バルブ開放期間とが重ならないようにする。 (もっと読む)


【課題】過給機付ディーゼルエンジン1の制御装置において、主噴射の開始時点の気筒11a内の温度及び圧力状態を最適化して主燃焼の制御性を向上させつつも、その気筒11a内の状態の最適化のために必要な前段噴射の燃料噴射量を少なくする。
【解決手段】エンジン本体1が低回転でかつ部分負荷である特定運転領域にあるときであって、気筒の圧縮端温度が所定温度よりも低い低温状態時には、過給機62による過給量を、所定温度以上の高温状態時の過給量よりも多い、所定以上の過給量としつつ、噴射制御手段(PCM10)は、少なくとも特定運転領域では、拡散燃焼を主体とした主燃焼を行うために圧縮上死点又はそれよりも前に燃料噴射を開始する主噴射と、主燃焼の開始前に前段燃焼が生起するように、主噴射よりも前のタイミングで少なくとも1回の燃料噴射を行う前段噴射と、を実行する。 (もっと読む)


【課題】ディーゼルエンジン1の制御装置において、予混合燃焼モードを実行可能な運転領域を、高負荷側に拡大する。
【解決手段】EGR率制御手段は、エンジン本体1の負荷の増大に伴い、所定負荷までは気筒11a内のO濃度が次第に低下する一方、所定負荷以上ではO濃度が次第に上昇するように、エンジン本体の負荷に応じてEGR率を調整し、噴射制御手段(PCM10)は、気筒内のO濃度が最も低い所定負荷を含む低負荷の運転領域においては(黒四角又は黒丸)、燃料噴射を圧縮上死点前に終了し、その後、燃料を着火及び燃焼させる予混合燃焼モードとする一方、予混合燃焼モードの運転領域よりも負荷が高い運転領域においては、燃料の噴射と当該燃料の着火及び燃焼とを並行して行う拡散燃焼モードとする。 (もっと読む)


【課題】 吸気通路に噴射した燃料を適切に筒内に噴射し、未燃の燃料が排気通路に吹き抜けることによる排気ガス性能、燃費の悪化を防止する。
【解決手段】 過給機51により吸気が過給されて吸気通路の圧力が排気通路の圧力よりも高いと判断された際に、吸気行程で燃料を噴射し、排気行程での燃料の噴射を減らす(無くす)と共に、吸気バルブ7と排気バルブ12の開弁期間にオーバラップが形成されていても、排気バルブ12が閉じた後に吸気行程で燃料を噴射し、燃料が排気通路に吹き抜けないようにする。 (もっと読む)


【課題】 筒内に燃料を直接噴射する直噴インジェクタを備えることなく、吸気通路への燃料噴射の状況を制御することで、排気浄化触媒を早期に活性化する。
【解決手段】 排気浄化触媒55の温度が所定温度に満たない時(冷態始動時等の冷態時)に、吸気行程中を含む時期に燃料を噴射し、混合気の燃料リッチ部分を点火プラグ3の周囲に集めて着火を安定させ、点火時期を遅角して排気温度を上昇させ、燃料リッチ部分のCOと燃料リーン部分のOを排気ガスに共存させ、筒内の膨張行程後半における酸化反応や、排気管内での酸化反応、及び、排気浄化触媒55の酸化反応を促進して排気浄化触媒55の温度を昇温させる。 (もっと読む)


【課題】多段噴射の実行時における噴射インターバルを精度良く調節することのできる燃料噴射制御装置を提供する。
【解決手段】この装置は、昇圧された状態の燃料を燃料噴射弁に供給する燃料供給系を備えたエンジンに適用され、間隔をおいて実行されるプレ噴射およびメイン噴射を含む多段噴射によって一回の燃焼サイクルにおける燃料噴射弁からの燃料噴射を行う。圧力センサにより検出される燃料噴射弁内部の燃料圧力の変動態様に基づいてプレ噴射の終了時期についての要求値(一点鎖線)と実値(実線)との偏差ΔPRを算出する。エンジンの運転状態に基づいて目標メイン噴射時期Tsmと目標プレインターバルTipとを各別に設定する。偏差ΔPRと目標メイン噴射時期Tsmと目標プレインターバルTipとに基づいてプレ噴射の実行期間についての制御目標値を設定する。 (もっと読む)


【課題】強制再生の頻度を少なくし、燃費を向上させることができる排気浄化システムを提供すること。
【解決手段】排気浄化フィルタ2と酸化触媒体11と温度推定手段と堆積量推定手段と冷却水温検知手段と排気昇温判断手段と排気昇温制御手段とを有する排ガス浄化システム1である。排気浄化フィルタ2は、多孔質体からなる基材と、該基材に担持された浄化触媒とを有し、該浄化触媒は、ゼオライトとアルカリ金属元素源及び/又はアルカリ土類金属元素源との混合物又はソーダライトを温度600℃以上で焼成してなる。排気昇温判断手段は、運転条件に基づいて排気温度を上昇させるか否かを判断する。排気昇温制御手段は、排気昇温判断手段の判断に基づいて上記排気の温度を制御する。 (もっと読む)


【課題】炭化水素(HC)の排出量を低減することが可能な内燃機関の燃料噴射制御装置を提供する。
【解決手段】吸気弁5の位相角及びリフト量を含む動弁特性が変更可能な可変動弁機構6を備えた内燃機関1に適用される燃料噴射制御装置であって、その吸気弁5の開弁時に筒内に流入する吸気の流速が所定の閾値を超えて増大する領域αに吸気弁5の動弁特性が設定されたか否かを判別する動弁特性判別手段と、当該動弁特性が領域αに設定されたと判断された場合、燃料噴射の開始時期を吸気弁5の開弁時期よりも当該動弁特性の設定状態に応じて遅角させる燃料噴射時期制御手段とを備える。 (もっと読む)


【課題】本発明は、内燃機関の制御装置に関し、用いる燃料の性状に関らず失火を防止できる内燃機関の制御装置を提供することを目的とする。
【解決手段】リッチ燃焼制御を実行時に、等量比φと筒内圧力Cp(還流させる排気ガスの量)に対する着火遅れ時間IgDの関係から算出される燃焼判定指数Kcrを用い、燃焼判定指数Kcrが小さくなるようにEGR弁の開度を制御する。これにより、図中の(A)及び(B)の間の領域、即ち、着火遅れ時間IgDの延長が少ない領域で燃焼するように還流させる排気ガスの量を制御し、安定したリッチ燃焼を得ることができる。 (もっと読む)


【課題】内燃機関のクランク軸に連結される発電機の発電を制御して回転変動抑制に利用する発電制御装置を含む通電制御システムにおいて、バッテリ電圧の変動を簡易な構成により補正し、さらなる回転変動抑制を図る。
【解決手段】発電制御方法決定時期判定手段S101と制御用回転速度算出手段S102と発電山数決定手段S103と優先順位判定手段S104と発電許可手段S105と発電停止手段S106とからなる発電制御方法決定手段S100によって発電制御S107を実施し、噴射通電開始時期決定手段S111と噴射終了通電時期決定手段S112と噴射通電終了時期補正手段S113とからなる噴射通電時間決定手段S110によって、噴射通電制御S130を実施し、点火通電終了時期決定手段S121と点火開始時期決定手段S122と点火開始時期補正手段S123とからなる点火通電時期決定手段S120によって点火通電制御S131を実施する。 (もっと読む)


1 - 20 / 78