説明

Fターム[5H730FG05]の内容

DC−DCコンバータ (106,849) | 制御態様 (8,760) | パルス幅制御 (3,833) | デューティ制御(PWM) (3,593)

Fターム[5H730FG05]に分類される特許

3,581 - 3,593 / 3,593


寄生的なパワーの抽出に基づく電源装置及び方法が、開示される。パワーは、装置に入ってくる、及び/又は、そこから出て行く信号から、抽出される。抽出されたパワーは、装置と関連したデバイス用のDC電圧に、変換される。抽出パワーの正の部分は、加法的に結合されて、第1の潜在的に時間依存する信号を生成し、抽出パワーの負の部分も、加法的に結合されて、第2の潜在的に時間依存する信号を生成する。2つの潜在的に時間依存する信号も加法的に結合され、所望の数のDC電圧及び振幅に、分割される。抽出パワーが、DC電圧を供給するのに不適切である場合、任意選択のDC電圧電源が、設けられる。
(もっと読む)


DC−DC変換器は、入力端子(37)と接地端子(38)との間に直列に接続された2つの電界効果トランジスタ(35,36)を有する。両方のトランジスタ(35,36)がオフとなるときの不感時間の調整は、トランジスタ(35,36)の一方又は双方のドレイン(39,44)及びソース(43,40)に直接かけられてケルビンフィードバック接続部(71,72,67,68)を設けることによって行い、信号ラインの抵抗及びインダクタンスを回避するようにしている。
(もっと読む)


制御端子および制御端子スイッチング閾値を有し、電荷蓄積コンデンサに電圧源からの電流を充電する第1スイッチングトランジスタと、このスイッチングトランジスタが、電圧源の電圧が所定のレベル未満のときにオンになり、電圧源の電圧が所定のレベルよりも大きいときにオフになるように、スイッチングトランジスタのオン/オフ動作を制御する制御回路と、電圧源の電圧が所定の電圧未満のときに、スイッチングトランジスタの制御端子に、スイッチング閾値よりも実質的に大きな制御電圧を供給し、それによってスイッチングトランジスタを飽和動作領域でオンに駆動する制御電圧供給回路と、この電源の出力電圧を供給する電荷蓄積コンデンサとを備える電源回路。
(もっと読む)


【課題】無負荷から定格電流までの範囲内では電池電圧に関わらず一定電圧を出力し、また、電池電圧より高い電圧を出力できる燃料電池を提供する。
【解決手段】燃料電池単体1は、降電圧型定電圧回路2を介して負荷3を接続している。降電圧型定電圧回路2は、スイッチング回路によって定電圧制御を行う。したがって、燃料電池単体1の出力電流−出力電圧が非直線な特性であっても、昇電圧型定電圧回路4のコンデンサ15から負荷3へは、燃料電池単体1の出力電圧より低い一定電圧が出力される。よって、無負荷時であっても燃料電池単体1の過電圧が負荷3へ印加されることはない。また、降電圧型定電圧回路2から出力する一定電圧のレベルは、制御回路16の電圧調整器17によって任意に可変できる。尚、降電圧型定電圧回路2を昇電圧型定電圧回路に置き換えれば、燃料電池単体1の電池電圧より高い電圧を出力することができる。 (もっと読む)


1以上の変動負荷(132,134)への電力を効率よく変換する電力変換ユニット(100)と変換方法がここに開示されている。第1の形態を有する電力が1以上の変動負荷に接続された1以上の電力変換ユニット(PCUs)(122,124,126)に供給される。PCUsは、電力を第1の形態から、供給先のシステム(120)で用いるのに適切な他の形態に変換する。前記変動負荷の負荷要求予測の少なくとも一部に基づき、電力消費が減少している間不要なPCUsを停止し、又は、電力消費が増加している間必要なPCUsを作動させて、損失となる電力を最小限にしながら、適切な時間に1以上の負荷に十分な電力を供給するようPCUsの動作を制御する。加えて、負荷要求の一次的な変動予測の少なくとも一部に基づき、電力消費の一時的な増加期間、1以上の変動負荷にエネルギーを追加するために出力電圧を増加し、又は電力消費の一時的な減少期間、出力電圧を減少したりして、負荷要求の一時的な変化に先立ってPCUはその出力電圧を変化させることができる。本発明は、レーダーシステム内で電力を配分するために用いたときに特に有益である。
(もっと読む)


【課題】CMOS集積回路を用いた同期整流方式の電源回路などにおいて、電力消費の低減と、部品増や効率低下を伴うことなく負荷変動に対する高速応答が可能な電源回路を提供すること。
【解決手段】PWM信号をゲートに、VIN(=VDD)をソースに接続するPMOS(QP1)のドレインに接続され、VSSをソースに有す、NMOS(QN1)のドレインに接続される中間ノード電圧VMAが、NMOS(QN1)オン時に、アンダーシュートから戻って基準電位VSSレベルを越えたときこれを検出してNMOS(QN1)のゲート電圧をローレベル(オフ)にする。また、NMOS(QN1)オン時に、中間ノード電圧VMAが、アンダーシュートから基準電位VSSレベルに戻ったタイミング(ゼロ点位置)を検出することで、このゼロ点位置検出信号を負荷電流の大小を示す信号としてPWM回路33に帰還してPWM信号のパルス幅を制御し、負荷変化に対応させる。 (もっと読む)


【課題】 昇圧型スイッチング電源において負荷の短絡あるいは過負荷時に生じる損焼を防止する。
【解決手段】 負荷の短絡あるいは過負荷時に、スイッチ素子に定電流機能動作をさせるとともに、PWMコントローラのタイマ・ラッチ機能によって主スイッチング素子のスイッチングを停止する。これによってスイッチング電源は昇圧機能を失い、出力が入力電圧まで低下することによってスイッチ素子の導通も停止され、入出力間を遮断する。正常な動作ではスイッチ素子が導通されて、出力に昇圧電圧が得られる。 (もっと読む)


【課題】本発明の目的は、電源部を大きくすることなく、例えば、モータ等の駆動装置を確実に駆動させることができる電源回路および電子装置を提供する。
【解決手段】本発明の電源回路46は、モータ等の駆動装置に電力を供給する手段であり、電源部40と、DC/DCコンバータ42と、調整回路44とで構成されている。DC/DCコンバータ42は、帰還電圧VFBに基づいて出力電圧Vが所定値となるように制御し、電源部40から入力される電圧(入力電圧V)を昇圧して、モータへ出力し、そのモータを駆動させる昇圧型のDC/DCコンバータである。調整回路44は、DC/DCコンバータの帰還電圧VFBを調整することにより、DC/DCコンバータ42を、DC/DCコンバータとして機能する「作動状態」と、DC/DCコンバータとして機能しない「非作動状態」とに切り換える。 (もっと読む)


【課題】 負荷電流の急変時においても出力電圧が大きく変動しないカレントモードDC/DCコンバータを提供する。
【解決手段】 負荷電流Ioが急変すると、フィードフォワード回路41は負荷電流Ioの変化分を検出し、その変化分をコイル電流I2の検出信号に加算する。カレントモード制御回路51は、コイル電流I2の検出信号に負荷電流Ioの変化分を加えた値と、エラーアンプA1からの誤差信号とを比較し、その比較結果に基づきスイッチング素子Q1のスイッチングを制御する。これにより、これにより、負荷電流Ioの急変にコイル電流I2が速やかに変化し、出力電圧Voの変動分は小さくなる。 (もっと読む)


【課題】 電子機器の極小負荷モード時に、時間の計時やリモコンからの信号を受信、解析する等、本体回路のマイコンの機能の一部又は全部を肩代わりすることができるスイッチング電源回路及び電子機器を提供することである。
【解決手段】 電子機器に装備することができると共に、交流電源をPWM方式により発振させるレギュレータ回路と、この発振させた電圧を整流して単一又は複数の所定の出力電圧を生成する同期整流回路と、レギュレータ回路のPWM制御及び同期整流回路の整流を制御することができる電源制御手段とを備えた電源回路であって、電源制御手段は、電子機器が極小負荷モードに移行した際に、当該電子機器を制御する機器制御手段が行う機能の一部又は全部を肩代わりする。 (もっと読む)


【課題】 本発明は、電源装置とそれを用いた自動車に関するものであり、負荷の動作を安定化させるものである。
【解決手段】 そして、この目的を達成する為に本発明は、DC/DCコンバータ7の入力端子12と出力端子13間に電流検出手段23を設け、この電流検出手段23によって検出した電流値によって、このDC/DCコンバータ7の電圧変換値を可変する構成としたものである。 (もっと読む)


【課題】 可変周波数型のスイッチング電源装置において周波数が低くなるとトランスから可聴音が発生することがある。
【解決手段】 可変周波数型のスイッチング電源装置をトランス2の1次巻線にスイッチ3を直列に接続して構成する。トランス2の2次巻線N2 には整流平滑回路4を接続する。スイッチング周波数が可聴周波数か否かを判定するコンパレータ24を設ける。可聴周波数の時にはスイッチ3のオン時間幅を狭める。 (もっと読む)


【課題】 軽負荷時のスイッチング損失をより低減することのできるスイッチング電源回路を提供する。
【解決手段】 定常負荷のときには、出力検出回路20からのフィードバックによって接続点10の電圧はしきい値よりも高く、また接続点7の電圧はしきい値よりも低くなるため、発振周波数休止期間回路11は動作せず発振回路13は三角波を連続して出力する。一方、軽負荷になると、出力検出回路20からのフィードバックによって接続点10の電圧はしきい値よりも低く、また接続点7の電圧はしきい値よりも高くなるため、発振周波数休止期間回路11が動作して、発振回路13は発振の休止期間が設けられた三角波を出力する。これに伴いスイッチング素子Q1は一定期間遮断された状態で休止するようなスイッチング動作を行う。 (もっと読む)


3,581 - 3,593 / 3,593