説明

炭化珪素単結晶育成用原料の製造方法

【課題】純度の向上と、収率の低下とのトレードオフ関係を改善した炭化珪素単結晶育成用原料の製造方法を提供する。
【解決手段】炭素坩堝を用いた昇華再結晶法による結晶成長に際して形成され、炭素坩堝1に結合した再結晶析出物を、炭素坩堝1ごと粉砕し、再結晶析出物が結合した状態で破片となった炭素坩堝材に水を浸透させる、水が浸透した破片状の炭素坩堝材に対して、水が凍結、融解する温度での温度サイクルを複数回繰り返した後、温度サイクルをかけられた炭素坩堝材を粉砕して炭化珪素単結晶育成用原料とする。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は半導体装置の製造に用いる炭化珪素単結晶育成用原料の製造方法に関する。
【背景技術】
【0002】
炭化珪素単結晶の製造方法として、現在、工業的に一般的な方法は改良レーリー法(または昇華再結晶法)と呼ばれる方法である。この方法は炭素材質の坩堝(炭素坩堝)中に炭化珪素単結晶育成用原料を充填し、坩堝内部の上部には炭化珪素種結晶(炭化珪素基板)が設置される。
【0003】
炭素坩堝は、不純物の少ない多孔質の通気性材料で構成され、坩堝の上部に種結晶を取り付け、坩堝内部への炭化珪素原料の充填が終わった時点で密閉される。
【0004】
坩堝を配置する容器内の雰囲気を排気し、一旦、高真空状態にして、酸素分圧を下げた後、不活性ガス(例えばアルゴンガス)を導入して不活性ガス雰囲気とし、大気圧程度まで圧力を上昇させる。
【0005】
その後、所定の温度(1800℃以上2500℃程度)まで坩堝を加熱し、所定温度に達した状態で不活性ガス雰囲気の圧力を1.333×103Pa(10Torr)以下まで低下させる。
【0006】
このとき、坩堝底部と上部には、上部が底部よりも温度が低くなるように、20℃以上200℃以下の温度差で温度勾配が形成されるように、坩堝全体の温度状態を設定する。この状態で、所定の温度(底部が1800℃以上2500℃程度となる温度)で、所定の圧力状態(1.333×103Pa以下)を所定の時間(成長に要する時間)保持する。
【0007】
これにより、炭化珪素単結晶育成用原料は坩堝内で昇華し、温度の低い種結晶上に炭化珪素の結晶が成長する。結晶成長が終了した後は、不活性ガス雰囲気の圧力を上昇させた後、坩堝全体の温度をゆっくり下げる。
【0008】
坩堝全体の温度が室温まで温度が下がった後、坩堝は取り出されて解体される。坩堝は密閉構造のため、炭素系接着剤で密閉されている。そのために、炭化珪素の結晶取り出し時は、坩堝を破壊する。炭化珪素の単結晶を取り出した後の坩堝内に残留する再結晶により析出した多結晶体や、蓋部に析出した多結晶体は、精製された原料として、次回の結晶成長原料として、再利用可能である。
【0009】
ここで、上述した炭素坩堝に充填する炭化珪素単結晶育成用原料には、炭化珪素研磨剤の製造方法として知られるアチソン法で製造された炭化珪素を精製したものを使用することが一般的である。
【0010】
アチソン法は、珪石とコークスの混合物を炉の両端に固定したグラファイトなどの炭素ヒーターで加熱し反応させる炭化珪素研磨剤の製造方法として知られている。アチソン法で製造された原料は、純度が低いので精製する必要があり、精製方法としては、真空状態で加熱することにより、揮発しやすい元素を蒸発させる方法が採られる。
【0011】
特許文献1には、これらの方法で得られた炭化珪素単結晶育成用原料を更に精製するために、改良レーリー法により単結晶を形成し、それを粉砕して再び炭化珪素単結晶育成用原料とし、再び単結晶を形成するという工程を複数回繰り返すことにより、高純度の炭化珪素原料を得る方法が開示されている。
【先行技術文献】
【特許文献】
【0012】
【特許文献1】特開2005−239496号公報
【発明の概要】
【発明が解決しようとする課題】
【0013】
以上説明したように、従来の炭化珪素単結晶育成用原料の製造方法では、改良レーリー法を繰り返すたびに、良質ではあるが結晶ではない炭化珪素や、炭素坩堝に固着した状態の炭化珪素単結晶や炭化珪素多結晶が多く発生する。それらは、回収が難しく、回収できないものは廃棄されるため、高純度化工程を繰り返すほど、純度は向上するものの、収率は低下すると言うトレードオフ関係が生じる。
【0014】
本発明は上記のような問題点を解消するためになされたもので、純度の向上と、収率の低下とのトレードオフ関係を改善した炭化珪素単結晶育成用原料の製造方法を提供することを目的とする。
【課題を解決するための手段】
【0015】
本発明に係る炭化珪素単結晶育成用原料の製造方法の態様は、炭化珪素単結晶の製造のための炭化珪素単結晶育成用原料の製造方法であって、炭素坩堝《1》を用いた昇華再結晶法による結晶成長に際して形成され、前記炭素坩堝に結合した再結晶析出物を、前記炭素坩堝ごと粉砕し、前記再結晶析出物が結合した状態で破片となった炭素坩堝材に水を浸透させる工程(a)と、前記工程(a)の後、水が浸透した破片状の前記炭素坩堝材に対して、水が凍結、溶解する温度での温度サイクルを複数回繰り返す工程(b)と、前記工程(b)の後、前記温度サイクルをかけられた前記炭素坩堝材を粉砕して前記炭化珪素単結晶育成用原料とする工程(c)とを備えている。
【発明の効果】
【0016】
本発明に係る炭化珪素単結晶育成用原料の製造方法の態様によれば、水が浸透した破片状の炭素坩堝材に対して、水が凍結、溶解する温度での温度サイクルを複数回繰り返すことで、炭素坩堝材が微小クラックよる強度低下を起こし、短時間で、確実に粉砕される。このため、従来の炭素坩堝材の粉砕に長時間を要する場合に比べて、炭化珪素材料と、炭素材料の強度を大きく異ならせるため、炭化珪素単結晶育成用原料の収率を高めることができ、純度の向上と、収率の低下とのトレードオフ関係を改善できる。
【図面の簡単な説明】
【0017】
【図1】炭素坩堝に蓋部を被せた状態の断面形状を示す図である。
【図2】単結晶成長装置の構成を示す図である。
【図3】蓋部と一体化して取り出された炭化珪素単結晶を示す図である。
【図4】実施の形態に係る炭化珪素単結晶育成用原料の製造方法を説明するフローチャートである。
【図5】実施の形態の変形例に係る炭化珪素単結晶育成用原料の製造方法を説明するフローチャートである。
【発明を実施するための形態】
【0018】
<実施の形態>
本発明に係る炭化珪素単結晶育成用原料の製造方法の実施の形態について図1〜図4を用いて説明する。
【0019】
図1は、改良レーリー法により炭化珪素単結晶を製造する際に使用する炭素坩堝1に蓋部6を被せた状態の断面形状を示す図である。なお、炭素坩堝1は円筒形をなしている。
【0020】
図1に示すように、不純物の少ない多孔質で通気性材料を有する炭素材で構成される炭素坩堝1の内部には、炭化珪素単結晶育成用原料の出発材料として、アチソン法で製造され、セラミック用原料として精製された、市販の純度99%以上の炭化珪素粉末2が充填されている。
【0021】
ここで、出発材料としては、アチソン法により得られた炭化珪素の他に、半導体グレードの5ナイン(5N)以上の珪素粉末と、高純度炭素粉末(5N以上)を等モル比で混合したものを不活性ガス中で高温で反応させて、高純度の炭化珪素再結晶粉末としたものを使用することもできる。
【0022】
なお、炭化珪素粉末2は、炭素坩堝1の上部側に空間が形成されるように充填され、炭素坩堝1に蓋部6を被せることで、蓋部6の内側に取付けられた炭化珪素種結晶(炭化珪素基板)4が炭素坩堝1の上部側の空間内に位置することとなる。
【0023】
蓋部6は、その中央部において突出する基板取付け台61を有し、その端面に炭化珪素種結晶4の主面が平行するように炭化珪素種結晶4を接着により取り付け、基板取付け台61が炭素坩堝1内部に挿入されるように炭素坩堝1に被せられる。なお、基板取付け台61と炭化珪素種結晶4とは炭素系接着剤で接着され、炭素坩堝1と蓋部6も、炭素系接着剤で接着され、炭素坩堝1は密閉される。なお、炭素坩堝1は多孔質で通気性材料を有するので、炭素坩堝1を密閉しても内部と外とで気体の出入りは可能である。
【0024】
蓋部6を取り付けて密閉した炭素坩堝1を、図2に示す単結晶成長装置10に搭載し、加熱を行う。図2に示す単結晶成長装置10は、石英菅11と、石英菅11が搭載され、真空排気のための真空排気装置13に結合される真空チャンバー12と、石英菅11の上部フランジ14を貫通するように取付けられたガス導入菅15を介して石英菅11内に不活性ガスを導入する流量制御装置(マスフローコントローラ)16と、石英菅11の外周に巻き付けられたワークコイル(加熱コイル)18とを有している。この、ワークコイル18に高周波電流を流すことにより炭素坩堝1が誘導加熱されることとなる。なお、炭素坩堝1は熱シールドのための部材(炭素繊維断熱材)で包まれるが、便宜的に図示は省略している。また、石英菅11中で炭素坩堝1を支持する部材も図示を省略している。
【0025】
石英菅11内に炭素坩堝1を搭載した後、上部フランジ14を取り付けて石英菅11を密閉し、炭素坩堝1内の気圧が1Pa以下となる真空状態となるまで真空排気装置13を用いて石英菅11内の空気を排気する。炭素坩堝1は多孔質で通気性材料を有するので、石英菅11内の空気の排気とともに、炭素坩堝1の空気も排気される。従って、真空チャンバー12内の気圧が所定値に達することで炭素坩堝1内の気圧が1Pa以下になったものと見積もることができる。
【0026】
真空チャンバー12内の気圧が所定値に達した後、真空チャンバー12と真空排気装置13とを結合する真空配管17の途中に設けた真空バルブ19を閉じ、流量制御装置16を用いて真空チャンバー12内に不活性ガスとしてアルゴンガスを導入する。この場合、1〜2時間かけて、真空チャンバー12内の気圧を6000〜8000Paまで高める。
【0027】
次に、ワークコイル18を用いた誘導加熱により、炭素坩堝1の温度を1800℃〜2400℃まで上昇させて、圧力を1333Paから133.3Pa程度に低下させ、その状態を5〜20時間保持して炭化珪素を炭素坩堝1内で昇華させ、再結晶化を行う。
【0028】
その後、ワークコイル18に流す高周波電流を徐々に少なくし、炭素坩堝1をゆっくり冷却する。なお、加熱には、ワークコイルを用いた高周波加熱法だけでなく、炭素発熱体を用いた抵抗加熱法を用いても良い。
【0029】
図2においては、石英菅11内の炭素坩堝1内において炭化珪素種結晶4の主面上に、生成結晶として炭化珪素単結晶3が形成され、蓋部6の表面には再結晶析出した炭化珪素多結晶5が形成されている。また、図示はしていないが炭化珪素粉末2の上部にも再結晶析出した炭化珪素多結晶が形成され、また、温度勾配によっては炭素坩堝1の底部側の炭化珪素粉末2も再結晶して炭化珪素多結晶となっている場合もある。
【0030】
このようにして得られた再結晶体は、炭化珪素多結晶5に見られるように焼結された状態で炭素坩堝1と一体化している。また、炭素坩堝1は蓋部6と炭素系接着剤で接着され、加熱により炭素坩堝1と蓋部6とは一体化しているので、炭素坩堝1を物理的に破壊することで蓋部6と炭素坩堝1とを分離し、蓋部6ごと、炭化珪素種結晶4の主面上に形成された炭化珪素単結晶3を取り出す。
【0031】
図3には、蓋部6の基板取付け台61と一体化して取り出された炭化珪素単結晶3を示しており、炭化珪素種結晶4は炭化珪素単結晶3と区別できない状態となっている。
【0032】
引用文献1では、この炭化珪素単結晶3を、ダイヤモンドスラリーを用いたワイヤーソーにより切断し、厚さ0.4mm程度の炭化珪素ウエハを複数枚切り出し、それらを砕いて1mm程度の粉末として2回目の結晶成長のための炭化珪素粉末とすることが特徴であるが、本発明の特徴は以下の工程にある。
【0033】
以下、図4に示すフローチャートを用いて、実施の形態に係る炭化珪素単結晶育成用原料の製造方法について説明する。
【0034】
まず、先に説明したように、炭化珪素単結晶3を取り除いた蓋部6と、炭素坩堝1を機械的方法により粗く砕く(ステップS1)。なお、蓋部6および炭素坩堝1の材質は同じであるので、両者を総称して炭素坩堝材と呼称する。
【0035】
蓋部6および炭素坩堝1に結合した再結晶析出物(炭化珪素多結晶や炭化珪素単結晶)の分離は、衝撃などによる機械的方法では困難であるので、従来は、炭素材と炭化珪素とが結合した状態でボールミルに入れ、ボールミル内でボールが衝突する際の衝撃によって、炭素を粉砕して粉末化する。炭化珪素は硬いため、粉砕されずに炭素と分離される。
【0036】
ここで、ボールミルに用いる容器およびボールは炭化珪素材質のものを用いる。また、ボールは入れないで、寸法10mm角以上の炭化珪素多結晶の塊を入れ、それ自身の互いの衝突による衝撃で、炭素坩堝材を粉砕する方法も採られる。炭素坩堝材の分離後は、得られた再結晶析出物の粉砕物を純水で洗浄し、表面付着物を除去するために、フッ酸洗浄および純水洗浄を行う。
【0037】
この工程における、ボールミルによる炭素坩堝材の粉砕は、再結晶時の高温加熱および、炭化珪素の分解により生じた珪素成分と炭素坩堝材との反応により、炭素坩堝材の硬度が高まって硬化しているために長時間を要する。すなわち、多孔質の炭素坩堝材は、硬度の低い柔らかい材質なので、硬い炭化珪素多結晶や炭化珪素単結晶とは粉砕により容易に分離することができるはずであるが、再結晶化や、昇華再結晶法による結晶成長時の高温、低圧力の条件では、炭化珪素の成分である珪素成分の分離が発生し、それが、炭素坩堝材の炭素や、さらに炭素坩堝1の外側を覆う熱シールドのための部材(炭素繊維断熱材)と反応し、より硬度の高い材料に変質するため、炭化珪素多結晶や炭化珪素単結晶との分離が困難となる。
【0038】
また、長時間、炭化珪素(再結晶析出物)と炭素坩堝材をボールミルにかけているために、炭化珪素自体の消耗も多くなり、粉末状になった部分は廃棄されるので、炭化珪素単結晶育成用原料の収率の低下を招く。
【0039】
そこで、本発明に係る炭化珪素単結晶育成用原料の製造方法では、ステップS1で得られた炭素坩堝1の破片を、純水とともにボールミルに入れ、ボールミルによる粉砕を1時間程度行う(ステップS2)。一例としては、1kg分のボール(炭化珪素材質)と炭素坩堝1の破片とで、容量2リットルのボールミルポットが八分目となるように入れ、純水を満たしてボールミルによる粉砕を行った。
【0040】
この方法で、炭化珪素多結晶および炭化珪素単結晶の鋭角部分を粉砕すると共に、結合している炭素坩堝材に、純水を充分に浸透させる。炭素坩堝材は多孔質なので、1時間も純水に浸されていれば純水が充分に浸透すると考えられるが、この時間はさらに短くても良く、10分〜30分でも良いと考えられる。しかし、炭化珪素多結晶および炭化珪素単結晶の鋭角部分を粉砕するという目的からは、1時間程度が適切と言える。
【0041】
ステップS2のボールミルによる粉砕を行った後、炭化珪素多結晶や炭化珪素単結晶が結合している炭素坩堝材の破片の表面の水分を除去する(ステップS3)。この作業は、半導体装置製造のクリーンルームで使用されるようなふき取り布を用いて、破片の表面の水分をふき取る作業であるが、省略することもできる。
【0042】
次に、水分をふき取った破片を樹脂容器に密閉し、零下20℃と20℃の温度状態を1時間ごとに繰り返す温度サイクル装置に入れ、零下20℃と20℃の温度サイクルを繰り返しかける(ステップS4)。これにより、炭素坩堝材に浸透させた水分が、凍結と融解を繰り返すこととなる。なお、上述した零下20℃と20℃の温度サイクルは一例であり、これに限定されるものではなく、炭素坩堝材に浸透させた水分が、凍結と融解を繰り返す温度サイクルであれば良く、より低い温度とより高い温度での温度サイクルであっても良い。
【0043】
上記温度サイクルを20回程度繰り返してかけた後、破片を常温に戻して、再びボールミルに入れて炭素坩堝材の粉砕を行う(ステップS5)。
【0044】
温度サイクルにより、浸透した水分が、凍結と融解を繰り返した後の炭素坩堝材のボールミルによる粉砕は、これを行わない従来の方法と比較して、半分以下の時間で、炭素坩堝材を粉砕することができた。
【0045】
このように、炭素坩堝材の粉砕に要する時間が短縮されるのは、炭素坩堝材に浸透した水分が内部で凍結する際に、まず表面から凍結が発生し、さらに、凍結時の堆積膨張で、炭素坩堝材内部に、微小クラックが多数発生することに起因している。凍結と融解を繰り返すことで、硬度が高くなった炭素坩堝材でも微小クラックよる強度低下が発生し、炭素坩堝材の強度が、弱くなるためである。
【0046】
また、所要時間が半分になるだけではなく、炭化珪素自体が、炭化珪素どうしの衝突による粉砕で粉末状になり、廃棄されることで発生する消耗量も減らすことができる。
【0047】
このように、本発明に係る炭化珪素単結晶育成用原料の製造方法によれば、炭素坩堝材のボールミルによる粉砕に費やす時間が従来の半分で済むことで、廃棄される炭化珪素の量が減って炭化珪素単結晶育成用原料の収率が高まり、また、炭素坩堝材が微小クラックよる強度低下で確実に粉砕されるので、この点でも炭化珪素単結晶育成用原料の収率が高まる。
【0048】
従って、図4に示したステップS1〜S5の工程で実現される高純度化工程を繰り返した場合でも、収率の低下を抑制することができ、純度の向上と、収率の低下とのトレードオフ関係を改善することができる。
【0049】
なお、以上の説明においては、蓋部6の内側には炭化珪素種結晶4を取付け、炭化珪素種結晶4上に炭化珪素単結晶3を成長させるものとして説明したが、蓋部6の内側には炭化珪素種結晶4を取付けない状態とし、蓋部6の内側には炭化珪素多結晶5のみを形成する構成としても良い。なお、炭化珪素種結晶4を取付けて、炭化珪素単結晶3を成長させた場合には、得られた炭化珪素単結晶3を砕いて炭化珪素単結晶育成用原料として用いることができる。
【0050】
<変形例>
図2に示したように蓋部6の内側、すなわち基板取付け台61を設けた側には、炭化珪素多結晶5が形成されている。これは、高純度の多結晶体であり、改良レーリー法により炭化珪素単結晶を製造する際にも形成され、次の結晶成長の材料として、充分使用できるものであるが、蓋部材に対して、強固に結合していて、分離が困難であるため、従来は炭化珪素単結晶を製造する際には、炭化珪素単結晶3を切断した後は廃棄されていた。
【0051】
本発明に係る変形例では、これも実施の形態と同じ方法で収率良く回収する方法について、図5に示すフローチャートを用いて説明する。
【0052】
なお、以下においては、改良レーリー法により炭化珪素単結晶を製造することを目的として、炭素坩堝1を使用したものとして説明するものである。
【0053】
基板取付け台61に結合した炭化珪素単結晶3(図3)を回収した後の蓋部6を機械的方法により数十mm角程度の大きさに粗く砕く(ステップS11)。この場合、蓋部6に結合した炭化珪素多結晶5の分離は困難であるので、ステップS11で得られた蓋部6の破片を、純水とともにボールミルに入れる。なお、蓋部6は粗く砕いているので、破片どうしの衝突により互いに粉砕されるものと考えられるが、場合によっては、炭化珪素材質のボールミル用のボールを入れる。なお、破片の量や純水の量は実施の形態と同じである。
【0054】
そして、ボールミルによる粉砕を2〜3時間程度行う(ステップS12)。この方法で、炭化珪素多結晶の鋭角部分を粉砕すると共に、結合している蓋部材(炭素坩堝材と同じ)に、純水を充分に浸透させる。炭素坩堝材は多孔質なので、1時間も純水に浸されていれば純水が充分に浸透すると考えられるが、蓋部6の破片が大きいので、炭化珪素多結晶の鋭角部分を粉砕するという目的からは、この程度の時間が適切と言える。
【0055】
ステップS12のボールミルによる粉砕を行った後、炭化珪素多結晶が結合している蓋部材の破片の表面の水分を除去する(ステップS13)。この作業は、半導体装置製造のクリーンルームで使用されるようなふき取り布を用いて、破片の表面の水分をふき取る作業であるが、省略することもできる。
【0056】
次に、水分をふき取った破片を樹脂容器に密閉し、零下20℃と20℃の温度状態を1時間ごとに繰り返す温度サイクル装置に入れ、零下20℃と20℃の温度サイクルを繰り返しかける(ステップS14)。これにより、蓋部材に浸透させた水分が、凍結と融解を繰り返すこととなる。なお、上述した零下20℃と20℃の温度サイクルは一例であり、これに限定されるものではなく、より低い温度とより高い温度での温度サイクルであっても良い。
【0057】
上記温度サイクルを20回程度繰り返してかけた後、破片を常温に戻して、再びボールミルに入れて蓋部材の粉砕を行う(ステップS15)。
【0058】
温度サイクルにより、浸透した水分が、凍結と融解を繰り返した蓋部材のボールミルによる粉砕は、これを行わない従来の方法と比較して、半分以下の時間で、蓋部材を粉砕することができた。
【0059】
また、所要時間が半分になるだけではなく、炭化珪素自体が、炭化珪素どうしの衝突による粉砕で粉末状になり、廃棄されることで発生する消耗量も減らすことができる。
【0060】
このように、本発明に係る炭化珪素単結晶育成用原料の製造方法によれば、炭化珪素単結晶を製造する際には、炭化珪素単結晶3を切断した後は廃棄されていた蓋部材に結合していた炭化珪素多結晶を炭化珪素単結晶育成用原料として効率的に回収できる。
【0061】
また、ボールミルによる粉砕に費やす時間が従来の半分で済むことで、廃棄される炭化珪素の量が減って炭化珪素単結晶育成用原料の収率が高まり、また、蓋部材が微小クラックよる強度低下で確実に粉砕されるので、この点でも炭化珪素単結晶育成用原料の収率が高まる。
【0062】
なお、上述した変形例では蓋部6に結合した炭化珪素多結晶の分離について説明したが、炭化珪素単結晶を製造するために使用した炭素坩堝1も、蓋部1と共に粗く砕いて純水と共にボールミルに入れて粉砕を行っても良いことは言うまでもない。
【符号の説明】
【0063】
1 炭素坩堝、2 炭化珪素粉末、3 炭化珪素単結晶、4 炭化珪素種結晶、5 炭化珪素多結晶、6 蓋部。

【特許請求の範囲】
【請求項1】
炭化珪素単結晶の製造のための炭化珪素単結晶育成用原料の製造方法であって、
(a)炭素坩堝を用いた昇華再結晶法による結晶成長に際して形成され、前記炭素坩堝に結合した再結晶析出物を、前記炭素坩堝ごと粉砕し、前記再結晶析出物が結合した状態で破片となった炭素坩堝材に水を浸透させる工程と、
(b)前記工程(a)の後、水が浸透した破片状の前記炭素坩堝材に対して、水が凍結、融解する温度での温度サイクルを複数回繰り返す工程と、
(c)前記工程(b)の後、前記温度サイクルをかけられた前記炭素坩堝材を粉砕して前記炭化珪素単結晶育成用原料とする工程と、を備える、炭化珪素単結晶育成用原料の製造方法。
【請求項2】
前記再結晶析出物は、
前記炭素坩堝内に設けた炭化珪素種結晶上での炭化珪素単結晶の結晶成長に付随して形成された炭化珪素多結晶である、請求項1記載の炭化珪素単結晶育成用原料の製造方法。
【請求項3】
前記(b)は、水が浸透した前記炭素坩堝材に対して、零下20℃と、20℃での温度サイクルを複数回繰り返す工程を含む、請求項1記載の炭化珪素単結晶育成用原料の製造方法。
【請求項4】
前記工程(a)〜(c)を経て得られた前記炭化珪素単結晶育成用原料を用いて、前記工程(a)〜(c)を繰り返す、請求項1記載の炭化珪素単結晶育成用原料の製造方法。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate


【公開番号】特開2012−218945(P2012−218945A)
【公開日】平成24年11月12日(2012.11.12)
【国際特許分類】
【出願番号】特願2011−82534(P2011−82534)
【出願日】平成23年4月4日(2011.4.4)
【出願人】(000006013)三菱電機株式会社 (33,312)
【Fターム(参考)】