説明

直流電源装置およびこれを用いた空気調和機

【課題】効率向上、力率改善、および、高周波問題の解消を高い水準で実現する。
【解決手段】直流電源装置11Aは、交流電源13からの交流電力を直流電力に変換する第1および第2の整流回路17a,17bと、第1および第2の整流回路17a,17bに接続されたリアクタ15と、交流電源13をリアクタ15を介して短絡するスイッチング部19と、交流電源13からの電流を取得する入力電流取得部27と、交流電源13の電圧を取得する入力電圧取得部25と、第1および第2の整流回路17a,17bの直流出力電圧を取得する直流出力電圧取得部31と、スイッチング部19の短絡タイミング、直流出力電圧、交流電源13の電圧、および、交流電源13からの電流の情報に基づいて、スイッチング部19の短絡時間幅を決定するスイッチング制御部43と、を備える。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、交流電源からの交流電力を直流電力に変換する直流電源装置およびこれを用いた空気調和機に関する。
【背景技術】
【0002】
例えば、家庭用の空気調和機には、地球環境保全の要請から、省資源、省エネルギーを強く求められるようになってきた。加えて、電子制御機器の急増に伴い、電源の品質に悪影響を与える高調波電流の規制に適合する製品が求められている。
【0003】
こうした要求を満たすために、特許文献1に係る電力供給装置が知られている。特許文献1に係る電力供給装置は、交流電源にその一端が接続されたリアクトルと、リアクトルを介して交流電源を短絡/開放する双方向通電性の短絡素子とを設けてなり、負荷量に応じて、短絡素子を、短絡動作を行わない力率改善無しモード、短絡動作を電源電圧半周期に1回もしくは複数回行う部分スイッチングモード、または、短絡動作を電流フィードバック制御にて高周波で行う高周波スイッチングモードのいずれかのモードによって制御する。
【0004】
特許文献1に係る電力供給装置によれば、部分スイッチングモードにおいて、短絡素子の短絡開始時間(タイミング)、短絡時間幅、および短絡回数を制御することで、リアクトルに蓄積するエネルギーを制御することができる(特許文献1の段落番号0037の記載事項参照)結果として、効率向上、力率改善、および、高周波問題の解消を実現することができるという。
【先行技術文献】
【特許文献】
【0005】
【特許文献1】特開2003−153543号公報
【発明の概要】
【発明が解決しようとする課題】
【0006】
しかしながら、特許文献1に係る電力供給装置では、効率向上、力率改善、および、高周波問題の解消を高い水準で実現するために、短絡素子の短絡時間幅を、いかにして制御するのかに関する具体的な記載はない。したがって、特許文献1に係る電力供給装置は、効率向上、力率改善、および、高周波問題の解消を高い水準で実現するための具体的な記載がない点で改良の余地があった。
【0007】
本発明は、効率向上、力率改善、および、高周波問題の解消を高い水準で実現することができるようにすることを目的とする。
【課題を解決するための手段】
【0008】
本発明に係る直流電源装置は、交流電源からの交流電力を直流電力に変換する整流回路と、前記整流回路に接続されたリアクタと、前記交流電源を前記リアクタを介して短絡するスイッチング部と、前記交流電源からの電流を取得する入力電流取得部と、前記交流電源の電圧を取得する入力電圧取得部と、前記交流電源のゼロクロス点を検出するゼロクロス検出部と、前記交流電源の周波数を算出する周波数算出部と、前記整流回路の直流出力電圧を取得する直流出力電圧取得部と、前記スイッチング部の短絡タイミングを記憶する短絡タイミング記憶部と、前記ゼロクロス検出部で検出されたゼロクロス点に同期させて前記スイッチング部を短絡または開放させる制御を行うスイッチング制御部と、を備え、前記スイッチング制御部は、前記短絡タイミング記憶部に記憶された短絡タイミング、前記直流出力電圧取得部で取得された前記直流出力電圧、前記入力電圧取得部で取得された前記交流電源の電圧、および、前記入力電流取得部で取得された前記交流電源からの電流の情報に基づいて、前記スイッチング部の短絡時間幅を決定する、ことを最も主要な特徴とする。
【発明の効果】
【0009】
本発明によれば、効率向上、力率改善、および、高周波問題の解消を高い水準で実現することができる。
【図面の簡単な説明】
【0010】
【図1】本発明の第1実施形態に係る直流電源装置の回路構成を表すブロック図である。
【図2A】電源周波数50HzでのパルスデューティDおよび入力電流理論波形を表す図である。
【図2B】電源周波数50Hzでのシミュレーションによる入力電流波形を表す図である。
【図3A】電源周波数60HzでのパルスデューティDおよび入力電流理論波形を表す図である。
【図3B】電源周波数60Hzでのシミュレーションによる入力電流波形を表す図である。
【図4】本発明の第2実施形態に係る直流電源装置の回路構成を表すブロック図である。
【図5】本発明の第3実施形態に係る直流電源装置の回路構成を表すブロック図である。
【図6】本発明の第1〜第3実施形態のいずれかに係る直流電源装置を搭載した空気調和機の概略構成図である。
【図7】同空気調和機の室外機の内部構造を表す斜視図である。
【図8】同室外機の天板を外した状態を表す平面図である。
【発明を実施するための形態】
【0011】
以下、本発明の複数の実施形態について、図面を参照しながら詳細に説明する。
[第1実施形態]
(第1実施形態に係る直流電源装置11Aの全体構成)
はじめに、第1実施形態に係る直流電源装置11Aの全体構成について、図1を参照して説明する。図1は、本発明の第1実施形態に係る直流電源装置11Aの回路構成を表すブロック図である。本発明の第1実施形態に係る直流電源装置11Aについて、本発明の“負荷”として、電動機23を駆動する三相インバータ回路21を例示して説明する。
【0012】
本発明の第1実施形態に係る直流電源装置11Aは、図1に示すように、交流電源13と、リアクタ15と、本発明の“整流回路”に相当する第1および第2の全波整流回路17a,17bと、スイッチング部19と、平滑コンデンサC1と、入力電圧取得部25と、入力電流取得部27と、ゼロクロス検出部29と、直流出力電圧取得部31と、制御回路33と、を備えて構成されている。
【0013】
交流電源13は、例えば単相交流電源である。ただし、交流電源13として三相交流電源を採用してもよい。交流電源13の一側配線L1には、リアクタ15が接続されている。リアクタ15は、交流電源13の力率を改善する役割を果たす。
【0014】
第1の全波整流回路17aは、図1に示すように、相互にブリッジ接続された第1〜第4の整流ダイオードD1〜D4を有する。第1の全波整流回路17aは、これら第1〜第4の整流ダイオードD1〜D4を用いて交流電源13の交流電圧波形を全波整流する機能を有する。
【0015】
第1〜第4の整流ダイオードD1〜D4は、図1に示すように、アノード側が正の直流母線PLに、カソード側が負の直流母線NLに、それぞれ接続されている。第1および第2の整流ダイオードD1,D2の間に位置する第1の接続点Nd1と、第3および第4の整流ダイオードD3,D4の間に位置する第2の接続点Nd2との間には、交流電源13が、リアクタ15および電流センサ27aを介して接続されている。
【0016】
第2の全波整流回路17bは、第1の全波整流回路17aと同様の構成を備える。すなわち、第2の全波整流回路17bは、図1に示すように、相互にブリッジ接続された第5〜第8の整流ダイオードD5〜D8を有する。第2の全波整流回路17bは、これら第5〜第8の整流ダイオードD5〜D8を用いて交流電源13の交流電圧波形を全波整流する機能を有する。
【0017】
第5および第6の整流ダイオードD5,D6の間に位置する第3の接続点Nd3と、第7および第8の整流ダイオードD7,D8の間に位置する第4の接続点Nd4との間には、交流電源13が、リアクタ15および電流センサ27aを介して接続されている。
【0018】
半導体スイッチング素子からなるスイッチング部19は、第5〜第8の整流ダイオードD5〜D8におけるアノード側およびカソード側の間に接続されている。半導体スイッチング素子としては、例えば、IGBT(Insulate Gate Bipola Transisitor)構造のものや、MOSFET(Metal Oxide Semiconductor Field Effect Transistor)構造のものなどを適宜用いればよい。スイッチング部19は、交流電源13を、リアクタ15を介して短絡する機能を有する。
【0019】
スイッチング部19は、後記する制御回路33に含まれるスイッチング制御部43の駆動制御信号に従って、短絡に係るタイミング、継続時間、および、回数が制御されるように構成されている。
【0020】
平滑コンデンサC1は、第1の全波整流回路17aで全波整流された直流電圧を平滑化する機能を有する。一対の端子を有する平滑コンデンサC1は、図1に示すように、一方の端子が正の直流母線PLに、他方の端子が負の直流母線NLに、それぞれ接続されている。平滑コンデンサC1の両端子間に、三相インバータ回路21を介して電動機23を駆動するための直流電力が生じるようになっている。
【0021】
第1実施形態に係る直流電源装置11Aに対する負荷である三相インバータ回路21は、第1の全波整流回路17aで整流され平滑コンデンサC1で平滑化された直流電力を、u相・v相・w相の擬似的な三相交流電力に変換し、変換後の擬似的な三相交流電力を電動機23に供給する機能を有する。
【0022】
入力電圧取得部25は、交流電源13の端子間電圧を取得する機能を有する。入力電流取得部27は、交流電源13から供給される電流の大きさを取得する機能を有する。ゼロクロス検出部29は、交流電源13の交流電圧波形のうちゼロクロス点(交流電圧波形がゼロ電位の時間軸上を通過する地点の時間情報)を取得する機能を有する。直流出力電圧取得部31は、第1の全波整流回路17aの出力である直流電圧を取得する機能を有する。これら各取得部25,27,31における取得値、および、ゼロクロス検出部29の検出値は、制御回路33へと送られるように構成されている。
【0023】
制御回路33は、前記した各取得部25,27,31における取得値、および、ゼロクロス検出部29の検出値に基づいて、スイッチング部19の短絡に係るタイミング、継続時間、および、回数を制御する機能を有する。かかる機能を実現するために、制御回路33は、コンバータ制御部35と、インダクタンス記憶部37と、短絡タイミング記憶部39と、周波数算出部41と、スイッチング制御部43と、インバータ制御部45と、PWM出力部47と、を備えて構成されている。
【0024】
コンバータ制御部35は、交流電源13の交流電力を直流電力に変換する機能を統括的に司る役割を果たす。
【0025】
インダクタンス記憶部37は、リアクタ15のインダクタンス値を記憶する機能を有する。インダクタンス記憶部37に記憶されたリアクタ15のインダクタンス値は、スイッチング部19の短絡に係る継続時間を決定する際に参照される。
なお、インダクタンス記憶部37の記憶内容は、例えば、リアクタ15のインダクタンス値が変わった場合に、その変更に併せて更新可能に構成されている。
【0026】
短絡タイミング記憶部39は、スイッチング部19の短絡タイミング(短絡開始時刻)を記憶する機能を有する。短絡タイミング記憶部39に記憶されるスイッチング部19の短絡タイミングは、後記する電源電圧半周期の期間内において、そこに含まれる短絡タイミング同士の高調波成分が相互に重ならないようにずらしてあることが好ましい。高調波電流を抑制することができるからである。
なお、短絡タイミング記憶部39の記憶内容は、例えば、スイッチング部19の短絡に係るタイミングを調整する必要が生じた場合に、その要求に従って更新可能に構成されている。
【0027】
周波数算出部41は、ゼロクロス検出部29のゼロクロス取得値に基づいて、交流電源13の周波数を算出する機能を有する。具体的には、周波数算出部41は、ゼロクロス信号の間隔を求め、求めた間隔が例えば9msよりも長ければ50Hzであり、9msよりも短ければ60Hzであるといったように、交流電源13の周波数を算出する。
【0028】
スイッチング制御部43は、インダクタンス記憶部37に記憶されたリアクタ15のインダクタンス値に係る情報、短絡タイミング記憶部39に記憶された短絡タイミングに係る情報、並びに、入力電圧取得部25で取得された入力電圧、入力電流取得部27で取得された入力電流、および、直流出力電圧取得部31で取得された出力電圧の情報に基づいて、スイッチング部19の短絡に係る継続時間を演算すると共に、この演算結果に従って、スイッチング部19の開放または短絡動作を制御する機能を有する。
【0029】
インバータ制御部45は、第1の全波整流回路17aで整流され平滑コンデンサC1で平滑化された直流電力を、u相・v相・w相の擬似的な三相交流電力に変換する機能を統括的に司る役割を果たす。
【0030】
PWM出力部47は、電動機23の駆動を制御するためのPWM(Pulse Width Modulation)信号を出力し、こうして出力したPWM信号を、インバータドライバ49を介して三相インバータ回路21に供給する機能を有する。
【0031】
制御回路33は、CPU(Central Processing Unit)、ROM(Read Only Memory)、RAM(Random Access Memory)などを備えたマイクロコンピュータ(以下“マイコン”という。)により構成される。このマイコンは、ROMに記憶されているプログラムを読み出して実行し、制御回路33に内包されるスイッチング制御部43などの各種機能部の実行制御を行うように機能する。
【0032】
(第1実施形態に係る直流電源装置11Aの動作)
次に、第1実施形態に係る直流電源装置11Aの動作について説明する。
【0033】
第1実施形態に係る直流電源装置11Aの動作説明に先立って、高調波電流の指標とした高調波の余裕度について説明する。電源周波数のn次の高調波電流の限度値は、JIS C61000−3−2「電磁両立性−第3-2部:限度値−高調波電流発生限度値」に規定されている。この限度値Isnに対して高調波電流をInとしたとき、n次の余裕度を(1−In/Isn)と定義する。
【0034】
この定義から明らかなように、n次の余裕度が0より小さい場合、限度値Isn以上のn次の高調波電流が流れていることになり、規定不適合となる。一方、n次の余裕度が0より大きい場合、限度値以下のn次の高調波電流が流れていることになり、規定適合となる。n次の余裕度が1に近い場合、n次の高調波電流は0に近づく。これは、電源に悪影響を与えるn次の高調波電流がほとんどなく、非常に良好な状態である。前記したn次の余裕度を2次から40次まで求め、最も小さいものを高調波の余裕度として定義する。
【0035】
直流電源装置11Aは、図1に示すように、交流電源13の交流電圧を第1の全波整流回路17aで整流し、平滑コンデンサC1で平滑化して直流電圧に変換し、変換後の直流電圧を、負荷としての三相インバータ回路21および電動機23に供給する。
【0036】
直流電源装置11Aにおける直流電圧の供給源は、平滑コンデンサC1に蓄えられた電荷である。このため、交流電源13の交流電圧が、平滑コンデンサC1の両端に現れる直流電圧を超えた場合に、負荷へと電流は流れる。その結果、通電区間が短く、電流波形は鋭くとがって力率が悪くなってしまう。そこで、力率改善を狙ってリアクタ15を設ける。すると、電流波形の波高値が低くなり、通電区間は後ろに伸びる。その結果、力率は改善される。
【0037】
さらに、ゼロクロス検出部29で検出されたゼロクロス点に同期させてスイッチング部19を短絡または開放させる制御を行うスイッチング制御部43を設け、このスイッチング制御部43によって、交流電源13のゼロクロス点を基準とした適宜の時期に適宜の時間幅だけスイッチング部19を短絡させ、力率の改善を図ることが行われている。
【0038】
これは、力率の改善がなされると、交流電源13の供給者における設備負担の軽減に寄与することに加えて、直流電源装置11Aが接続されるブレーカ、または、コンセントの容量を上限まで活用して直流電源装置11Aの能力を最大限に発揮させて、利用者のコストパフォーマンスを実質的に向上することができるためである。
【0039】
しかし、闇雲に短絡しさえすればよいわけではない。短絡の仕方や負荷の状況によっては、高調波電流が却って増加する事態も起こりえる。
【0040】
この点、本発明者らの研究によると、力率の向上および高調波電流の減少を図りながら、直流電圧を√2*Vs(交流入力電圧の実効値)を超えた値に上昇させるには、スイッチング部19を電源電圧半周期の期間内に4回以上短絡させる必要があることがわかった。そうすると、かかる短絡回数の制約条件を踏まえて、短絡タイミング(短絡開始時刻)および短絡時間幅を決定することが求められる。
【0041】
しかし、短絡タイミング(短絡開始時刻)および短絡時間幅を、いかなる考え方に基づいて決定するかは、非常に難しい問題であった。
【0042】
そこで、本発明では、短絡タイミングをパルス毎に決め、そのデューティDを計算することで短絡時間幅を決定する構成を採用することとした。
ここで、パルス毎の短絡タイミング(短絡開始時刻;電源電圧半周期のゼロクロス(始点)を原点として短絡が開始されるまでの時間軸上の時刻情報)をtd、短絡時間幅(パルスのオン時間)をton、短絡終了から次パルスの短絡タイミングまでの時間幅(パルスのオフ時間)をtoffとそれぞれ定義する。
【0043】
(デューティDの算出方法)
次にデューティDの算出方法について説明する。
まず、入力電流をis、交流入力電圧をvs、リアクタ15のインダクタンス値をL、直流出力電圧をVdとする。すると、スイッチング部19を短絡(オン)したときの入力電流の微分ion’は、(式1)のように表わすことができる。また、スイッチング部19をオフしたときの入力電流の微分ioff’は、(式2)のように表わすことができる。
ion’=dis/dt=vs/L ・・・(式1)
ioff’=dis/dt=(vs−Vd)/L ・・・(式2)
【0044】
スイッチング部19を短絡(オン)する時間幅をton、開放(オフ)する時間幅をtoffとした場合、そのデューティDは、(式3)のように表わすことができる。
D=ton/(ton+toff) ・・・(式3)
【0045】
スイッチング部19を短絡(オン)したときの入力電流の微分ion’と、スイッチング部19を開放(オフ)したときの入力電流の微分ioff’のデューティDを加味した値が、入力電流の微分is’に等しくなると仮定すると、(式4)が成り立つ。この(式4)からデューティDを求めると、(式5)が成り立つ。
is’=D・ion’+(1−D)・ioff’ ・・・(式4)
D=(is’−ioff’)/(ion’−ioff’) ・・・(式5)
【0046】
交流入力電圧vsが与えられれば、(式1)、(式2)を用いて、ion’およびioff’を求めることができる。
ここで、交流入力電圧vsは、周波数算出部41より取得した電源周波数fと、入力電圧取得部25より取得した交流電圧実効値Vsとを用いて、(式6)のように表わすことができる。
vs=√2・Vs・sin(2πft) ・・・(式6)
【0047】
また、瞬時入力電流isは、入力電流取得部27より取得した入力電流実効値Isを用いて、(式7)のように表わすことができる。その微分をとると(式8)となる。
is =√2・Is・sin(2πft) ・・・(式7)
is’=2√2・πf・Is・cos(2πft) ・・(式8)
【0048】
したがって、(式1)、(式2)、(式8)の解を(式5)に代入することによって入力電流isを正弦波に近づけるためのデューティDを計算により求めることができる。
【0049】
なお、あらかじめ電源電圧半周期を短絡回数で分割しておき、分割した細切れの時間幅にデューティDを乗算して短絡(オン)時間幅tonを決定すれば、力率が高い入力電流isとすることができる。
【0050】
(分割の仕方と、短絡(オン)時間幅ton,開放(オフ)時間幅toffの決め方について)
次に、電源電圧半周期において短絡動作を8回行う場合を例示して、短絡(オン)時間幅tonの決め方について説明する。
【0051】
nパルス目に係る短絡タイミングtdをtd(n)、nパルス目に係る短絡時間幅(パルスのオン時間)をton(n)、nパルス目に係る短絡終了から次パルスの短絡タイミングまでの時間幅(パルスのオフ時間)をtoff(n)とする。
なお、td(1)については、力率の向上、高調波電流の抑制を考慮し、これらが適切な値をとるような調整を要する。ここでは、td(1)=0.5msとする。
【0052】
例えば、電源周波数fが50Hzの場合、1パルス目のton(1)+toff(1)については、isを理論正弦波に近づけるために電流を大きく流す必要があるため、2msと長めに設定する。その後の2〜7パルス目のton(n)+toff(n)については、共通の値(0.8ms)を設定する。
【0053】
すると、ゼロクロスから短絡開始までの時間td(n)(単位;ms)の集合は、(式9)のように表すことができる。ただし、n=1〜8である。
(td(1),td(2),td(3),td(4),td(5),td(6),td(7),td(8))
=(0.5,2.5,3.3,4.1,4.9,5.7,6.5,7.3) ・・・(式9)
【0054】
仮に、負荷に流れる電流を14Aとし、目標直流出力電圧を300Vとした場合、デューティDについては、(式5)を用いて図2Aのように表すことができる。図2Aは、電源周波数50HzでのパルスデューティDおよび入力電流理論波形を表す図である。
【0055】
また、ton(n)+toff(n)の中心値にデューティDを乗算すれば、nパルス目に係る短絡時間幅ton(n)を計算により求めることができる。こうして求めたton(n)を用いて電源周波数50Hzでシミュレーションを行ったときの、入力電流波形と直流出力電圧波形を図2Bに示す。
【0056】
図2Bに示す例では、力率は98.1%とじゅうぶんに高く、高調波余裕度は11%であった。この高調波余裕度を評価すると、次のように考えられる。すなわち、高調波余裕度が11%であった次数は25次である。21次以降の次数については、部分奇数次高調波電流で100%以下であれば、適用限度値の150%以下を充足する。ここで、部分奇数次高調波電流の余裕度は49.3%である。したがって、25次については適用限度値の150%以下であることを考慮すると、高調波余裕度は61%となり、高調波余裕度としてはじゅうぶんに大きいことがわかる。
【0057】
第1実施形態に係る直流電源装置11Aの制御方式は、従来のコンバータ制御と組み合わせて直流出力電圧が√2Vs以上必要となった場合に用いて特に有効である。
【0058】
一方、電源周波数fが60Hzの場合、ゼロクロスから短絡開始までの時間td(n)(単位;ms)の集合は、(式9)の5/6とすればよい。これを(式10)に表す。
(td(1),td(2),td(3),td(4),td(5),td(6),td(7),td(8))=(0.42,2.08,2.75,3.42,4.08,4.75,5.41,6.08) ・・・(式10)
【0059】
仮に、負荷に流れる電流を14Aとし、目標直流出力電圧を300Vとした場合、デューティDについては、(式5)を用いて図3Aのように表すことができる。図3Aは、電源周波数60HzでのパルスデューティDおよび入力電流理論波形を表す図である。
【0060】
また、ton(n)+toff(n)の中心値にデューティDを乗算すれば、nパルス目に係る短絡時間幅ton(n)を計算により求めることができる。こうして求めたton(n)を用いて電源周波数60Hzでシミュレーションを行ったときの、入力電流波形と直流出力電圧波形を図3Bに示す。
【0061】
図3Bに示す例では、力率は97.7%とじゅうぶんに高く、高調波余裕度は43%であった。ただし、直流出力電圧Vdは314Vとなり、入力電流実効値Isも14.89Aと、(式5)を用いて計算により求めたデューティDよりも増えてしまった。こうした誤差は、直流出力電圧Vdと入力電流実効値Isは増えたがパルス数は少ないこと、および、(式5)では直流出力電圧Vdを一定としていることなどに起因するものと考えられる。
【0062】
こうした誤差を除くために、いくつかの対策をとることができる。第1の対策は、直流出力電圧Vdの値をフィードバックして、(式5)を用いて計算されるデューティDにある係数をかけることである。第2の対策は、直流出力電圧Vdの値をフィードバックして、(式5)に用いる電圧を変更することである。第3の対策は、直流出力電圧Vdの値をフィードバックして、(式5)に用いるリアクタ15のインダクタンス値Lを変更することである。
【0063】
以上のように、第1実施形態に係る直流電源装置11Aによれば、4パルス〜40パルスの範囲内において、電源周波数fが50Hzまたは60Hzのいずれであっても、効率向上、力率改善、および、高周波問題の解消を高い水準で実現することができる。
【0064】
[第2実施形態]
次に、第2実施形態に係る直流電源装置11Bの全体構成について、図4を参照して説明する。図4は、本発明の第2実施形態に係る直流電源装置11Bの回路構成を表すブロック図である。
なお、第1実施形態に係る直流電源装置11Aと、第2実施形態に係る直流電源装置11Bとは、ほとんどの構成要素が共通している。そのため、その機能が共通する部材間には原則として共通の符号を付し、その重複した説明を省略して、両者の相違点に注目して説明を進める。
【0065】
第1実施形態と第2実施形態との相違点は、リアクタ15のインダクタンス値Lの取得経路が異なる点である。すなわち、第1実施形態に係る直流電源装置11Aでは、図1に示すように、インダクタンス記憶部37を備え、コンバータ制御部35は、インダクタンス記憶部37を介してリアクタ15のインダクタンス値Lを取得する構成を採用している。
【0066】
これに対し、第2実施形態に係る直流電源装置11Bでは、図4に示すように、インダクタンス推定部38を備え、コンバータ制御部35は、インダクタンス推定部38を介してリアクタ15のインダクタンス値Lを取得する構成を採用している。
【0067】
インダクタンス推定部38は、入力電流取得部25で取得された交流電源13の入力電圧実効値Vs、入力電流取得部27で取得された交流電源13からの入力電流実効値Is、直流出力電圧取得部31で取得された直流出力電圧Vd、および、周波数算出部41で算出された交流電源の周波数fを含む各情報に基づいて、リアクタ15のインダクタンス値Lを推定する。
【0068】
具体的には、スイッチング部19を短絡させない状態を維持して、負荷(三相インバータ回路21および電動機23)に与える直流電力の大きさを、そのときに流れる入力電流isが1〜2A程度となるように調整する。この調整は、三相インバータ回路21に与えるPWM信号を調整することによって遂行することができる。このとき、リアクタ15のインダクタンス値Lは、(式11)のように推定することができる。
L=(Vs−Vd/√2)/(2f・Is) ・・・(式11)
【0069】
要するに、インダクタンス推定部38は、負荷(三相インバータ回路21および電動機23)の駆動に先立って、(式11)の計算式を用いて、リアクタ15のインダクタンス値Lを推定すればよい。この推定値は、力率、直流抵抗分、第1の全波整流回路17aの順方向電圧などが加味されていないため、誤差を含む。しかし、生じた誤差は、第1実施形態において直流出力電圧Vdの誤差への対策で説明したように、コンバータ制御を開始したあと、直流出力電圧Vdの値をフィードバックすることによって軽減することができる。
【0070】
第2実施形態に係る直流電源装置11Bによれば、第1実施形態に係る直流電源装置11Aと同様に、4パルス〜40パルスの範囲内において、電源周波数fが50Hzまたは60Hzのいずれであっても、効率向上、力率改善、および、高周波問題の解消を高い水準で実現することができる。
【0071】
[第3実施形態]
次に、第3実施形態に係る直流電源装置11Cの全体構成について、図5を参照して説明する。図5は、本発明の第3実施形態に係る直流電源装置11Cの回路構成を表すブロック図である。
なお、第1実施形態に係る直流電源装置11Aと、第3実施形態に係る直流電源装置11Cとは、ほとんどの構成要素が共通している。そのため、その機能が共通する部材間には原則として共通の符号を付し、その重複した説明を省略して、両者の相違点に注目して説明を進める。
【0072】
第1実施形態と第3実施形態との相違点は、交流電源13の入力電圧実効値Vsの取得経路が異なる点である。すなわち、第1実施形態に係る直流電源装置11Aでは、図1に示すように、入力電圧取得部25を備え、コンバータ制御部35は、入力電圧取得部25を介して交流電源13の入力電圧vsを取得する構成を採用している。
【0073】
これに対し、第3実施形態に係る直流電源装置11Cでは、図5に示すように、本発明の入力電圧取得部および入力電圧推定部の両者に相当する入力電圧推定部26を備え、コンバータ制御部35は、入力電圧推定部26を介して交流電源13の入力電圧vsを取得する構成を採用している。
【0074】
入力電圧推定部26は、負荷(三相インバータ回路21および電動機23)の駆動前に直流出力電圧取得部31で取得された直流出力電圧Vdの情報に基づいて交流電源13の入力電圧実効値Vsを推定する。交流電源13の入力電圧実効値Vsは、(式12)のように推定することができる。
Vs=Vd/√2 ・・・(式12)
【0075】
この推定値は、第1の全波整流回路17aの順方向電圧などが加味されていないため、誤差を含む。しかし、生じた誤差は、第1実施形態において直流出力電圧Vdの誤差への対策で説明したように、コンバータ制御を開始したあと、直流出力電圧Vdの値をフィードバックすることによって軽減することができる。
【0076】
第3実施形態に係る直流電源装置11Cによれば、第1および第2実施形態に係る直流電源装置11A,11Bと同様に、4パルス〜40パルスの範囲内において、電源周波数fが50Hzまたは60Hzのいずれであっても、効率向上、力率改善、および、高周波問題の解消を高い水準で実現することができる。
【0077】
[第1〜第3実施形態のいずれかに係る直流電源装置11A〜11Cの適用例]
次に、第1〜第3実施形態のいずれかに係る直流電源装置を搭載した空気調和機51について、図6〜図8を参照して説明する。図6は、本発明の第1〜第3実施形態のいずれかに係る直流電源装置を搭載した空気調和機51の概略構成図である。図7は、同空気調和機51の室外機55の内部構造を表す斜視図である。図8は、同室外機55の天板を外した状態を表す平面図である。
【0078】
第1〜第3実施形態のいずれかに係る直流電源装置11(11A,11B,11Cのいずれか)を搭載した空気調和機51は、図6に示すように、室内機53と室外機55との間を、接続配管57を介して接続して構成されている。
【0079】
室内機53は、図6に示すように、筐体59に対し、不図示の室内熱交換器、室内送風機、露受皿などを取付けて、これらを化粧枠61で覆い、化粧枠61の前側に前面パネル63を取付けて構成されている。化粧枠61には、室内空気を吸い込む空気吸込み口65と、温湿度が調和された空気を室内へ吹き出す空気吸込み口67とが、上下にそれぞれ設けられている。
【0080】
室内機53は、図示しない電装品ボックスに制御基板を備え、この制御基板にマイコンが設けられる。マイコンは、図示しない室内温度センサ、室内湿度センサなどの各種のセンサからの信号を受け、リモコン69からの操作信号を受光部71で受けると共に、室内送風機などを制御し、かつ、室外機55との通信を司るなど、室内機53を統括して制御する。
【0081】
室外機55は、ベース部73に対し、図7に示す室外熱交換器79、圧縮機85、室外送風機(不図示)を搭載し、これらを外筐75で覆い、配管接続バルブ77に室内機53からの接続配管57を接続して構成されている。
【0082】
室外機55の外筐75は、図6に示すように、前面板75a、側面板75b、および、天板75cからなる。室外機55には、室外熱交換器79(図7参照)に対向する外面側に、室外空気の吸込み部が、室外ファン81(図7参照)に対向する前面板75a(図6参照)の側に、空気の流通を許すファングリル83(図6および図8参照)が、それぞれ設けられている。
【0083】
室外ファン81は、図7および図8に示すように、室外熱交換器79が上流側に、ファングリル83が下流側に位置する空気の流れをつくりだすように回転駆動される。これにより、室外ファン81は、室外空気を室外熱交換器79へと強制的に導くように動作する。
【0084】
室外熱交換器79は、図7および図8に示すように、室外機55の側面から背面にかけて略L字状に配設されている。これにより、空気との接触面積を大きく確保し、熱交換能力を高めている。室外ファン81も、できるだけ大口径のものが使用される。室外ファン81と圧縮機85との間には、仕切板87が設けられている。この仕切板87は、送風機室89と機械室91との間を仕切っている。
【0085】
送風機室89には、室外熱交換器79、および、室外ファン81がそれぞれ設けられている。機械室91には、圧縮機85、アキュムレータ93、冷媒送り管(不図示)などがそれぞれ設けられている。
【0086】
第1〜第3実施形態に係る直流電源装置11A〜11Cのいずれか、圧縮機85の電動機23を駆動する三相インバータ回路21、送風モータ95などの各種電装品97は、図7に示すように、電装箱98内に収容した状態で蓋99をかぶせて収納されている。これにより、各種電装品97のメンテナンス性を担保している。
【0087】
このように構成された空気調和機51を運転する場合、利用者はリモコン69を操作することによって、冷房、除湿、暖房のうちいずれかの空気調和モードを選択的に設定する。例えば、空気調和モードとして、冷房の自動運転を選択的に設定した場合、これを受けてマイコンは、温度センサや湿度センサなどの各種センサからの情報に基づく冷房自動運転を行わせる制御指令を行う。
【0088】
マイコンからの制御指令を受けた室外機55の制御部(不図示)は、制御指令に従って室内送風機を駆動し、空気吸込み口65から室内熱交換器へと室内空気を流通させる。また、室外機55の制御部は、室内機53のマイコンからの制御指令に従って、圧縮機85、送風モータ、制御弁などを制御し、圧縮機85からの冷媒を冷凍サイクルに循環させると共に、室外熱交換器79へと室外空気を流通させるように動作する。
【0089】
以上説明したように、第1〜第3実施形態のいずれかに係る直流電源装置11A〜11Cの適用例では、回転速度制御型の圧縮機85を搭載した空気調和機51において、第1〜第3実施形態に係る直流電源装置11A〜11Cのいずれかを、圧縮機85を回転駆動する電動機23の電源として用いる構成を採用することとした。
【0090】
こうした構成を採用した場合、空気調和機51は、運転開始直後では、高能力で室内を空気調和して使用者の快適性への要求に素早く対応し、設定温度付近まで空気調和が進んだ段階では、空調運転が断続すると利用者に不快感を与えるため、低能力での連続運転に切り換えることが求められている。このため、空気調和機51では、圧縮機85の回転速度を可変にして、高能力から低能力までの広範な負荷変動に対処可能なことが強く求められている。
【0091】
この点に関し、第1〜第3実施形態のいずれかに係る直流電源装置11A〜11Cを、空気調和機51に適用した場合、運転開始直後では、高能力で室内を空気調和して使用者の快適性への要求に素早く対応し、設定温度付近まで空気調和が進んだ段階では、圧縮機85の回転速度が低い、低能力での連続運転へと円滑に切り換えることができる。
【0092】
具体的には、運転開始直後などの高負荷時では、スイッチング部19の短絡回数を増やす。この場合、高能力(圧縮機85の電動機23が誘起電圧に打勝って高速回転する)を発揮できるように、直流出力電圧Vsを昇圧して、圧縮機85を駆動する。これと同時に、高力率を確保し、空気調和機51を接続したブレーカ、または、コンセントの容量を目いっぱいに活用して空気調和機51の能力を最大限に発揮させ、室内を素早く快適温度にすることができる。
【0093】
なお、一般に、空気調和機51では、設定温度付近での運転時間が長くなる。このため、スイッチング損失が小さい、効率の良い運転が長く続いて、全体としての消費電力量を抑制することができる。その結果、安価で、電源高調波電流規制を満足し、電源容量を最大限に活用した高能力で、効率の良い空気調和機51を提供することができる。
【0094】
[その他の実施形態]
以上説明した複数の実施形態は、本発明の具現化例を示したものである。従って、これらによって本発明の技術的範囲が限定的に解釈されることがあってはならない。本発明はその要旨またはその主要な特徴から逸脱することなく、様々な形態で実施することができるからである。
【0095】
例えば、第1〜第3実施形態のいずれかに係る直流電源装置11A〜11Cの適用例として、回転速度制御型の圧縮機85を搭載した空気調和機51を例示して説明したが、本発明はこの例に限定されない。第1〜第3実施形態のいずれかに係る直流電源装置11A〜11Cは、直流電源装置を用いた広範な電子機器に適用することができる。
【符号の説明】
【0096】
11A 第1実施形態に係る直流電源装置
11B 第2実施形態に係る直流電源装置
11C 第3実施形態に係る直流電源装置
13 交流電源
15 リアクタ
17a,17b 第1および第2の全波整流回路(整流回路)
19 スイッチング部
21 三相インバータ回路(負荷)
23 電動機(負荷)
25 入力電圧取得部
26 入力電圧推定部(入力電圧取得部)
27 入力電流取得部
27a 電流センサ(入力電流取得部)
29 ゼロクロス検出部
31 直流出力電圧取得部
33 制御回路
35 コンバータ制御部
37 インダクタンス記憶部
38 インダクタンス推定部
39 短絡タイミング記憶部
41 周波数算出部
43 スイッチング制御部
45 インバータ制御部
47 PWM出力部
49 インバータドライバ
51 空気調和機
53 室内機
55 室外機
57 接続配管
85 圧縮機
C1 平滑コンデンサ
D1〜D4 第1〜第4の整流ダイオード
D5〜D8 第5〜第8の整流ダイオード
Nd1〜Nd4 第1〜第4の接続点
PL 正の直流母線
NL 負の直流母線

【特許請求の範囲】
【請求項1】
交流電源からの交流電力を直流電力に変換する整流回路と、
前記整流回路に接続されたリアクタと、
前記交流電源を前記リアクタを介して短絡するスイッチング部と、
前記交流電源からの電流を取得する入力電流取得部と、
前記交流電源の電圧を取得する入力電圧取得部と、
前記交流電源のゼロクロス点を検出するゼロクロス検出部と、
前記交流電源の周波数を算出する周波数算出部と、
前記整流回路の直流出力電圧を取得する直流出力電圧取得部と、
前記スイッチング部の短絡タイミングを記憶する短絡タイミング記憶部と、
前記ゼロクロス検出部で検出されたゼロクロス点に同期させて前記スイッチング部を短絡または開放させる制御を行うスイッチング制御部と、を備え、
前記スイッチング制御部は、前記短絡タイミング記憶部に記憶された短絡タイミング、前記直流出力電圧取得部で取得された前記直流出力電圧、前記入力電圧取得部で取得された前記交流電源の電圧、および、前記入力電流取得部で取得された前記交流電源からの電流の情報に基づいて、前記スイッチング部の短絡時間幅を決定する、
ことを特徴とする直流電源装置。
【請求項2】
請求項1に記載の直流電源装置であって、
前記整流回路の出力を平滑化し負荷に電力を供給する平滑コンデンサをさらに備え、
前記入力電圧取得部は、前記負荷の駆動前に前記直流出力電圧取得部で取得された前記直流出力電圧の情報に基づいて前記交流電源の電圧を取得する、
ことを特徴とする直流電源装置。
【請求項3】
請求項1または2に記載の直流電源装置であって、
前記リアクタのインダクタンス値を記憶するインダクタンス記憶部をさらに備え、
前記スイッチング制御部は、前記インダクタンス記憶部に記憶された前記リアクタのインダクタンス値を加味して、前記スイッチング部の短絡時間幅を決定する、
ことを特徴とする直流電源装置。
【請求項4】
請求項1または2に記載の直流電源装置であって、
前記リアクタのインダクタンス値を推定するインダクタンス推定部をさらに備え、
前記インダクタンス推定部は、前記入力電流取得部で取得された交流電源の電圧、前記入力電流取得部で取得された交流電源からの電流、前記直流出力電圧取得部で取得された直流出力電圧、および、前記周波数算出部で算出された交流電源の周波数を含む各情報に基づいて、前記リアクタのインダクタンス値を推定し、
前記スイッチング制御部は、前記インダクタンス推定部で推定された前記リアクタのインダクタンス値を加味して、前記スイッチング部の短絡時間幅を決定する、
ことを特徴とする直流電源装置。
【請求項5】
請求項1〜4のいずれか一項に記載の直流電源装置であって、
前記スイッチング制御部は、前記スイッチング部を電源電圧半周期の期間内に4回〜40回短絡させる制御を行う、
ことを特徴とする直流電源装置。
【請求項6】
回転速度制御型の圧縮機を搭載した空気調和機において、
請求項1〜5のいずれか一項に記載の直流電源装置を、前記圧縮機を回転駆動する電動機の電源として用いた、
ことを特徴とする空気調和機。

【図1】
image rotate

【図2A】
image rotate

【図2B】
image rotate

【図3A】
image rotate

【図3B】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate

【図7】
image rotate

【図8】
image rotate


【公開番号】特開2013−106455(P2013−106455A)
【公開日】平成25年5月30日(2013.5.30)
【国際特許分類】
【出願番号】特願2011−249440(P2011−249440)
【出願日】平成23年11月15日(2011.11.15)
【出願人】(399048917)日立アプライアンス株式会社 (3,043)
【Fターム(参考)】