説明

Fターム[4G001BC41]の内容

セラミック製品 (17,109) | 製造方法 (5,177) | 焼結方法 (2,477)

Fターム[4G001BC41]の下位に属するFターム

Fターム[4G001BC41]に分類される特許

21 - 40 / 51


【課題】低温度で製造できると共に、窒化アルミニウムを高密度とすることができ、しかも、半導体モジュール等の発熱体と熱交換器との間に介在されたときに発熱体と熱交換器との間で電気的絶縁性を確保しながらも発熱体から熱交換器への熱抵抗の増大を抑える。
【解決手段】溶融アルミニウム4を窒素ガス雰囲気中でマグネシウム5を助剤として900から1300℃までの範囲に昇温して窒化アルミニウム6を溶融アルミニウム4上に直接形成し、アルミニウム4と窒化アルミニウム6とを接合し、Al−AlN複合材料8を製造する。窒化アルミニウム粉末を1900℃以上の高温度で焼結する工程を行う必要がない分、1900℃以上の高温度に対して900から1300℃までの範囲の低温度で製造できると共に、窒化アルミニウム6を高密度とすることができる。 (もっと読む)


【課題】573°K〜873°Kの範囲で、MoとSiの同時酸化が起こり、さらにMo酸化物の蒸発減少が伴うという、ペスト(粉化現象)を効果的に防止できるMoSi粉末、同粉末の製造方法、同粉末を用いた発熱体及び発熱体の製造方法の提供。
【解決手段】MoSi粉末を酸化性の酸又は酸化剤を含む酸で洗浄し、MoSi粉末の比表面積が0.2m/g以上であり、かつ表面に酸化皮膜を備え、また酸素含有量が2000ppm以上であるMoSi粉末とし、さらに、該粉末を用いてペスト(粉化現象)を効果的に防止できるMoSi粉末を主成分とする発熱体を得る。 (もっと読む)


【課題】低圧条件でhBNからcBNを合成する低圧合成方法及びcBN原料粉末を用いたcBN焼結体の製造方法を提供する。
【解決手段】金属触媒として、15wt%以上50wt%未満のMoと、1.5〜8wt%のAl及びMgのいずれか1種又は2種と、残部はFe,Co及びNiのうちから選ばれる1種又は2種以上からなる合金粉末あるいは混合粉末を用いて、低圧(4GPa以上)かつ1200〜1900℃でhBNからcBNを合成し、また、cBNを原料粉末とし、金属触媒として用いた上記合金粉末あるいは混合粉末を焼結助剤として原料粉末に含有させて焼結し、cBN焼結体を得る。 (もっと読む)


【課題】GaAs単結晶等の成長に使用されるBNるつぼを低コストで製造する方法の提供。
【解決手段】
高分子フィルムを硼素と窒素を含む雰囲気で熱処理することにより窒化硼素(BN)に転化させてBNるつぼを製造する方法であり、より具体的には、高分子フィルムを硼素及び窒素を含むガス中で1200℃〜2000℃の温度で処理して少なくとも表面部が硼素及び窒素からなる中間体を生成させる第一の工程と、得られた中間体を2000℃以上3000℃以下の温度範囲で本焼成してBNるつぼを得る第二の工程とを含むBNるつぼの製造方法。 (もっと読む)


本発明は、軸受内の転がり要素として適した窒化ケイ素又はサイアロンの焼結セラミック部品、及びそのようなセラミック部品を生成するための製造方法に関する。該セラミック部品は、高密度と、均一できめ細かな微細構造とを有し、部品に優れた機械的性質を付与する。SPSによる焼結セラミック部品の製造は、費用効果があり迅速である。 (もっと読む)


【課題】劈開性が低く、クラック(亀裂)伝播抑制作用に優れ、高硬度かつ高靭性を有する高純度窒化ホウ素焼結体の製造方法を提供すること。
【解決手段】粒径0.5μm以下の微細なウルツ鉱型窒化ホウ素微粒粉末表面を、酸素を含有せず、流体源として固体のポリ塩化ビニリデン、ポリ塩化ビニル、ポリエチレンを使用する超臨界流体で清浄化し、焼結助剤を添加せずに5GPa以上かつ1400℃以上の高圧高温条件下で焼結することにより、微量のウルツ鉱型窒化ホウ素を含有する高純度窒化ホウ素焼結体を製造する。 (もっと読む)


【課題】銃弾,砲弾等の飛翔体の貫通性能が飛躍的に高くなっているが、それらに対して、十分に防護できる防護部材を提供する。
【解決手段】受衝部2をセラミックスで構成し、受衝部2の裏面側に位置する基部3を受衝部2より熱膨張係数の低い材質で構成した防護部材1とすることにより、基部3には圧縮力がかかった状態が維持されるため、着弾した銃弾や砲弾の貫通を阻止する性能が向上する。また、受衝面2aで発生したクラックの進行は、基部3との境界で止められるため、前記両材質の特性が十分に発揮され、相乗効果により防護性能を高くすることができる。 (もっと読む)


【課題】切削工具、ヒートシンク等に利用される高硬度高密度立方晶窒化ホウ素系焼結体を提供する。
【解決手段】平均粒径0.5〜6μmの立方晶窒化ホウ素粉末10〜50体積%と、平均粒径0.1〜1μmのβ−サイアロン粉末50〜90体積%とを混合し、80〜120MPaの圧力で加圧し、同時に、真空雰囲気中で直流パルス電流を印加し、昇温速度80〜130℃/minで1500〜1700℃の加熱温度範囲に加熱し、該加熱温度範囲で1〜10分加熱保持する放電プラズマ焼結により、高硬度高密度立方晶窒化ホウ素系焼結体を得る。
(もっと読む)


多孔質の繊維強化構造を形成する工程、前記繊維構造の細孔中に、複合材料マトリックスを構成するための元素を含有する粉体を導入する工程、および前記粉体同士の間、あるいは前記粉体の少なくとも一部と加えられた補足的な少なくとも一種の元素との間で反応を起こすことにより、前記粉体から少なくとも前記マトリックスの主要部分を形成する工程を具備し、前記繊維構造内に導入された前記粉体、および前記加えられた補足的な元素は、ホウ素化合物を含む少なくとも一つの回復不連続マトリックス相、およびラメラ構造の化合物を含む少なくとも1種のクラック偏向不連続マトリックス相を形成する元素を含有する方法である。マトリックスの少なくとも主要部分は、繊維構造内に導入された粉体と少なくとも一種の加えられた補足的な元素との間の反応により、または粉体同士の焼結により形成される。 (もっと読む)


【課題】より生産性が高く、更に常温及び高温環境下における機械的特性に優れたSiCセラミックス及びその製造方法を提供する。
【解決手段】SiCセラミックスであって、平均粒径P=10μmφ以下のSiと、平均粒径P=1μmφ以下のアモルファスCからなる出発原料より構成され、焼結体のβ−SiCとしての相対密度が90%以上であるものとする。このとき、B及びCの混合物をB−C系焼結助剤として含むことが好ましい。さらに、上記組成からなる焼結体中に、SiCに対して外割りで3〜15vol%のカーボンナノファイバーを略均質に分散させた状態で含むことがより好ましい。 (もっと読む)


【課題】TiCの持つ特性すなわち、高硬度、軽量、高導電性、高熱伝導性という特性を十分に活用し、さらに靭性、難焼結性を著しく改善すると共に、その他の特性も同時に向上させることのできるTiC基Ti−Si−C系複合セラミックス及びその製造方法を提供する。
【解決手段】TiSiC、SiC及びTiCからなる相を備え、高密度、高ヤング率、高硬度、高破壊靭性の特性を有することを特徴とするTiC基Ti−Si−C系複合セラミックス。 (もっと読む)


【課題】
従来の希土類付活サイアロン蛍光体より緑色の輝度が高く、従来の酸化物蛍光体よりも耐久性に優れる緑色蛍光体を用いた照明器具および画像表示装置を提供する。
【解決手段】
発光光源と蛍光体とを含む照明器具、又は、励起源と蛍光体とを含む画像表示装置において、前記蛍光体は、β型Si結晶構造を持つ窒化物または酸窒化物の結晶中に金属元素M(ただし、Mは、Mn、Ce、Euから選ばれる1種または2種以上の元素)が固溶してなるβ型Si結晶構造を持つ窒化物または酸窒化物の結晶相を含み、前記発光光源あるいは励起源を照射することにより波長500nmから600nmの範囲の波長にピークを持つ蛍光を発光することを特徴とする。 (もっと読む)


【課題】研磨による平坦性に優れた窒化アルミニウム焼結体を提供する。
【解決手段】粒界強度を向上させると共に、且つ、焼結処理中に窒化アルミニウムと固溶することにより粒界相として存在しなくなるSiO又はMgOを窒化アルミニウム粉末に微量添加し、1600[℃]以上1750[℃]以下の低温で窒化アルミニウム粉末を焼結することにより、研磨による平坦性に優れた窒化アルミニウム焼結体を製造できることを知見した。 (もっと読む)


【課題】高密度で熱伝導性に優れ、高強度の炭化ケイ素焼結体を相対的に低圧、低温の条件で製造できる方法を提供すること。
【解決手段】放電プラズマ焼結法により炭化ケイ素焼結体を製造する方法。平均粒径5μm以下の炭化ケイ素にアルミニウム粉体を焼結助剤として添加して、温度1400〜1800℃及び圧力20〜70MPaの条件下で焼結させる。そして、当該方法で製造された炭化ケイ素焼結体は、炭化ケイ素(SiC)と、Al及び/又はAl43若しくはAl4SiC4等の炭化アルミニウム系化合物を含む粒界相とからなるとともに、Al:0.5〜7%、残部が実質的にSiCの組成であり、かつ、相対密度が95%(密度:3.0g/cm3)以上である。 (もっと読む)


【課題】本発明は、従来と比べ非常に緻密で気孔がないSiC焼結体、SiC粒子及びSiC焼結体の製造方法を得ることを課題とする。
【解決手段】不純物として焼結体中に残留する焼結助剤無添加で製造され、かつ主となる立方晶の他に菱面体晶が含まれることを特徴とするSiC焼結体。 (もっと読む)


【課題】従来よりも短時間にかつ低コストでAl添加TiNのバルク体を製造する方法を提供する。
【解決手段】所定量の金属Ti粉末および所定量の金属Al粉末を混合した後、プレス成形して第1の成形体とする。第1の成形体を所定圧のN雰囲気中で自己燃焼合成させ、それによって得られた試料を粉砕して第1の粉体とする。第1の粉体をプレス成形して第2の成形体とする。第2の成形体を所定圧のN雰囲気中で自己燃焼合成させ、それによって得られた試料を粉砕して第2の粉体とする。第2の粉体をプレス成形して第3の成形体とする。第3の成形体を加圧焼結させることにより、Al添加TiNのバルク体を得る。 (もっと読む)


【課題】結晶粒の粗大化を防止し、残留炭化チタン(TiC)相の発生を抑制して均質化による特性の向上を図るとともに、エネルギー多消費型の製造法から、より低温、短時間での合成法を確立するものであり、かつパルス通電加圧焼結方法による短時間成形法により、優れた特性を持つチタンシリコンカーバイド焼結体及びその製造方法を提供する。
【解決手段】チタン(Ti)、炭化珪素(SiC)、炭化チタン(TiC)の混合粉末をパルス通電加圧焼結することにより得られ、結晶粒径が10μm以下であり、炭化チタン(TiC)含有量が8wt%以下であることを特徴とするチタンシリコンカーバイド焼結体。 (もっと読む)


【課題】 比較的低温での焼結により相対密度98%以上の高密度のSiCを主成分とする焼結体を提供しようとする。
【解決手段】 SiCとA1Nとの固溶体の微粒子から構成された被焼結粉末を焼結して成り、該固溶体は0.5〜10mol%のA1Nを含み、該微粒子は積層無秩序構造を持ち、前記焼結体の平均粒子サイズが5〜200nmであり、微量のA1Nが固溶したβ−SiC構造、微量のA1Nが固溶したα−SiCと微量のA1Nが固溶したβ−SiCとの混在構造から選択される構造を有することを特徴とする焼結体であり、あるいは、該固溶体が8mol%以上のA1Nを含み、前記焼結体の平均粒子サイズが5〜200nmであり、前記焼結体が、A1Nが固溶した変調構造を有する、ことを特徴とする焼結体である。
(もっと読む)


【課題】 耐プラズマ性が確保されており、クリーニング処理を繰り返しても長期間使用可能で、経済的に有利なプラズマプロセス装置用チャンバー部材を提供すること。
【解決手段】 気孔率が1%以下で、かつ、破断面が粒内破壊の性状を呈する窒化アルミニウム焼結体からなることを特徴とするプラズマプロセス装置用チャンバー部材。 (もっと読む)


【課題】長期操業の可能なセラミックス焼結体の製造方法を提供する。
【解決手段】焼結原料を予熱途中からプレスを開始して焼結温度まで高め、所定時間保持した後冷却することを特徴とするセラミックス焼結体の製造方法。本発明においては、以下の実施形態等から選ばれた少なくとも一つを備えていることが好ましい。(1)プレス開始前の昇温速度が500〜1400℃/hであり、プレス開始前の昇温速度をプレス後の昇温速度よりも遅くすること。(2)冷却途中でプレスを解除すること。(3)焼結温度が1200〜2200℃、プレス圧力が10MPa以上であること。(4)プレスの開始と解除を800〜1400℃で行うこと。(5)焼結原料を、順次連続して予熱、プレス、焼結、冷却すること。(6)複数個の焼結原料が容器に収納されてなるユニットを、順次連続して予熱、プレス、焼結、冷却すること、など。 (もっと読む)


21 - 40 / 51