説明

Fターム[4K028AB01]の内容

金属質材料の表面への固相拡散 (3,561) | C又はNが拡散されるもの (920) | 特定な鉄鋼材料 (520)

Fターム[4K028AB01]に分類される特許

1 - 20 / 520


【課題】窒化処理に先立って鉄鋼材料の表面に前処理を施すことなく窒化処理を行うことができるとともに、耐食性を損なうことなく、表面の硬さ等の物性を向上させることができる窒化処理方法を提供する。
【解決手段】窒化処理方法は、熱分解炉18で尿素20を含む窒化剤を450〜600℃に加熱して熱分解し、窒化処理槽11でその分解ガスにより420〜450℃にて鉄鋼材料13の窒化処理を行うものである。窒化剤としては尿素20のみで構成することが好ましく、またその尿素20は肥料用尿素であることが好ましい。鉄鋼材料13としては、SUS304、SUS316等のオーステナイト系ステンレス鋼で代表されるステンレス鋼が用いられる。窒化剤の熱分解により得られる分解ガスは、アンモニアガス及びシアン化水素ガスを含有する。 (もっと読む)


【課題】鋼部材の表面組織に対する炭素浸炭量を制御する方法を提供をする。
【解決手段】鋼製ワーク10を浸炭用溶液中Sに浸漬し、当該鋼製ワークを高周波誘導加熱し4、当該鋼製ワークの表面の結晶組織に浸炭処理を行う浸炭処理方法であって、高周波誘導加熱法4を用いて、当該鋼製ワークの浸炭対象表面を浸炭用溶液の沸点以上の温度に急速加熱し、浸炭用溶液が熱分解して活性炭素を含む状態でガス化した浸炭用ガスが、薄い浸炭用ガス層となり当該鋼製ワークの表面を覆う状態とし、不活性ガスバブリング20を用いて、当該浸炭用ガス層を破壊して、その浸炭用ガス層内の活性炭素濃度を変化させ、当該鋼製ワークの表面に形成する浸炭層の炭素侵入量の制御を行う鋼製ワークの浸炭処理方法。 (もっと読む)


【課題】耐ピッチング性に優れた歯車およびその製造方法を提供する。
【解決手段】鍛造あるいは機械加工により歯車形状とした後、真空中で浸炭処理を行い、その後炉内で冷却後に焼入れする際、前記炉内での、浸炭後の炉内冷却から焼入れ前の加熱保持の間に、窒化処理を行い、前記焼入れ後に焼戻し処理される歯車であって、成分組成が質量%で、C:0.15〜0.35%、Si:0.70〜2.50%、Mn:0.20〜1.00%、Ni:0.01〜0.80%、Cr:0.10〜1.50%、Mo:0.01〜0.80%、Al:0.005〜0.200%、残部鉄および不可避不純物からなり、前記成分組成におけるSi、Crと前記窒化処理による表層最大侵入窒素量による焼戻し軟化抵抗パラメータHSiCrNが(1)式を満たす事を特徴とする耐ピッチング性に優れた歯車。
SiCrN(=58Si+42×(Ns−Cr×14/52))≧80(1)、ここで、Si,Crは含有量(質量%)Ns:表層最大侵入窒素量(質量%)を示す。 (もっと読む)


【課題】プレス加工性が良好であり、かつ調質熱処理後には優れた耐アブレシブ摩耗性が実現できる鋼板を提供する。
【解決手段】質量%で、C:0.10〜0.30%、Si:0.03〜1.00%、Mn:0.10〜2.50%、P:0.001〜0.030%、S:0.001〜0.030%、Cr:0〜2.00%、Ti:0〜0.25%、Nb:0〜0.25%、V:0〜1.00%、Ni:0〜2.00%、Mo:0〜1.0%、B:0〜0.0200%、T.Al:0.005〜0.070%、N:0.001〜0.008%、残部Feおよび不可避的不純物からなり、Mn+Cr:1.00〜3.00%、Ti+Nb:0.07%以上を満たす化学組成を有する鋼板であって、断面硬さが200HV以下であり、局部伸びの異方性が小さいプレス加工用焼鈍鋼板。 (もっと読む)


【課題】冷却による素材の変形を抑制するとともに、表面に錆が発生しない摺動部材、クラッチプレートおよびそれらの製造方法を提供する。
【解決手段】摺動部材は、鋼材からなる母材部110と、母材部110の表面側に20〜50μmの厚さに形成される窒素拡散層120と、窒素拡散層120の表面側に20〜50μmの厚さに形成され最表面をなす窒素化合物層130とを備える。この摺動部材における窒素化合物層130および窒素拡散層120は、鋼材からなる素材を660〜690℃のアンモニア雰囲気にて加熱処理を行う加熱工程と、加熱工程の後に60〜80℃の油温にて油冷を行う油冷工程と、油冷工程の後に表面側を加圧しながら250〜350℃の温度にて焼き戻し処理を行う焼き戻し工程とにより形成する。 (もっと読む)


【課題】圧縮機などに使用可能で、かつ長期に亘って耐摩耗性、耐焼付き性を確保可能な摺動部材を提供することを目的とする。
【解決手段】少なくとも一方の摺動部材111が鋳鉄112にて構成された摺動部において、鋳鉄からなる摺動部材表面に、黒鉛部114を除く合金部上に被覆された窒化鉄を主成分とする窒化処理層115と、黒鉛部114表面と窒化処理層115表面とで構成される凹状の油溜り部116を形成した摺動部材とする。 (もっと読む)


【課題】高価なショットピーニングを施さなくても疲労特性の向上を図ることが可能な窒化部品、その製造方法を提供する。
【解決手段】窒化部品は、脱炭層と窒化層とを含む表面硬化層を有する。部品内部の化学成分は、質量%で、C:0.15%以上0.5%未満を含有し、Cr:6.0%以下、V:2.5%以下、Mo:3.0%以下及びAl:1.5%以下から選択される1種又は2種以上を含有し、N含有量が0.03%以下であり、(0.08×[%Cr]+0.29×[%V]+0.15×[%Mo]+0.65×[%Al])/[%C]による窒化係数N1が1.0以上であり、表面硬化層は、その表面の炭素濃度をCとした場合、(C−C)/Cによる脱炭率が0.30以上であり、かつ、その表面の窒素濃度をN2とした場合、N2/(C−C+0.2)による表面窒素濃度係数Nsが1.0以上である。 (もっと読む)


【課題】マルエージング鋼を用いず、高価なショットピーニングを施さなくても疲労強度の向上を図ることが可能なCVT用リング部材を提供する。
【解決手段】薄い構造用鋼板からリング状に形成された素材としてのリング部材を脱炭処理、周長調整、窒化処理する。素材としてのリング部材の化学成分は、質量%で、C:0.3〜0.5%、Si:0.5%以下、Mn:0.8%以下、Ni:4.0%以下、Cr:1.0〜4.0%、Mo:0.5〜1.5%、V:0.1〜1.0%を含有し、残部がFe及び不可避的不純物よりなるとよい。脱炭処理は、窒化処理後のリング部材におけるリング幅方向略中央のリング表面から内方に向かう深さであって、素材としてのリング部材のC含有量−0.02%のCを含有する深さを脱炭深さdcとし、窒化処理された後のリング部材の厚みをdrとした場合、dc/drが0.03〜0.23の範囲内で行うとよい。 (もっと読む)


【課題】歯元曲げ疲労強度が高く、かつ面圧疲労特性に優れた高強度歯車等の素材に好適な浸炭用鋼を提供する。
【解決手段】質量%で、C:0.1〜0.35%、Si:0.01〜0.22%、Mn:0.3〜1.5%、Cr:1.35〜3.0%、P:0.018%以下、S:0.02%以下、Al:0.015〜0.05%、N:0.008〜0.015%およびO:0.0015%以下を、次式(1)、(2)及び(3)を満足する範囲で含有し、残部はFeおよび不可避的不純物の組成とし、さらに球状化焼鈍前の鋼組織はフェライトとパーライトの合計の組織分率を85%以上、かつフェライトの平均粒径を25μm以下とする。3.1≧{([%Si]/2)+[%Mn]+[%Cr]}≧2.2---(1)[%C]−([%Si]/2)+([%Mn]/5)+2[%Cr]≧3.0---(2)2.5≧[%Al]/[%N]≧1.7---(3) (もっと読む)


【課題】浸炭処理される歯車の製造効率を向上する。
【解決手段】風力発電用の増速機に使用される遊星歯車36は浸炭処理される。歯100の歯面100aには浸炭層102よりも浅い複数の溝104が等間隔に設けられる。複数の溝104は回転軸Rの方向に沿って形成される。歯面100aに占める複数の溝104の面積は、それ以外の部分の面積よりも小さい。歯底面100cを含む歯と歯の間の表面には溝104は設けられていない。 (もっと読む)


【課題】スペース効率が良くなる熱処理設備および熱処理方法を提供すること。
【解決手段】本発明の一態様は、第1加熱浸炭室10Aおよび第2加熱浸炭室10Bと、第1冷却室12Aおよび第2冷却室12Bと、搬送ユニット28とを有する熱処理設備1において、搬送ユニット28が移動するレール26を挟んで対向して配置される1対の第1加熱浸炭室10Aと第1冷却室12Aおよび1対の第2加熱浸炭室10Bと第2冷却室12Bがレール26に沿って複数配置されており、搬送ユニット28は、レール26を移動して第1加熱浸炭室10Aや第2加熱浸炭室10Bに各々被処理品W1〜W4を搬送可能で、かつ、第1加熱浸炭室10Aから第1冷却室12Aへおよび第2加熱浸炭室10Bから第2冷却室12Bへ被処理品W1〜W4を搬送可能である。 (もっと読む)


【課題】 耐食性、耐焼付き性に優れた高硬度、高靭性を有する、粉末から成形の高速度鋼で、この全体が窒化されている鋼材を提供する。
【解決手段】 質量%で、C:0.85〜1.20%、Si:≦0.5%、Mn:≦0.5%、Cr:3.8〜6.0%、Mo:5.6〜8.0%、W:5.1〜8.0%、V:3.0〜6.0%、N:0.4〜1.5%を含有し、これらはC+N:1.25〜2.50%、Mo+W/2:8.3〜11.0%、および耐食性指数の4.7(Mo+W/2)+1.4N−Cr−2.1Mn:≧32.5%を満足し、残部がFeおよび不可避不純物からなる鋼合金で、析出する窒化物がバナジウム系窒化物(VNまたは一部炭化物を含むVCN)からなり、その窒化物の平均粒径が1μm以下で、かつ、鋼材の断面積中に占める面積率が5%以上で、硬さが65HRC以上である高靱性で、耐食性、耐焼付き性に優れた窒化粉末高速度鋼。 (もっと読む)


【課題】 焼入室から流入する大気エアで熱処理室の雰囲気が害されることのない熱処理方法を提案する。
【解決手段】 熱処理室3において非減圧下で熱処理した被処理体2を焼入室4において冷却する熱処理方法において、焼入済みの被処理体2を前記焼入室4から取り出す際に、前記熱処理室3から前記焼入室4へのガス導入のための連通を遮断する。これにより、焼入室4側から熱処理室3側へとエアが流入することがなくなるので、熱処理室3の雰囲気が害されることがない。 (もっと読む)


【課題】 摺動特性に優れた処理品が得られる鋼部材の表面処理方法を提供する。
【解決手段】 鋼部材に対してガス雰囲気中で窒化処理を行い鋼部材表面に窒素拡散層を形成し、その後浸硫処理を行う鋼部材の表面処理方法であって、前記窒化処理工程において該鋼部材表面の鉄窒化化合物層の厚さを1μm以下とし、該鋼部材の表面に浸硫処理を行う。具体的には、前記窒化処理工程において処理条件を次のように制御する。雰囲気条件:NH3ガスの分圧が0.01〜0.07、H2ガスの分圧が0.83〜0.90、N2ガスの分圧が残部、処理温度条件:500〜620℃。 (もっと読む)


【課題】必ずしも鋼中に高濃度のCおよび合金元素を含有させることなく、冷間加工性および最終部品強度を兼備し、さらには高温使用環境における強度にも優れた部品が得られる機械構造用鉄系材料を製造するための方法について提案する。
【解決手段】鉄系素材の少なくとも一部に700℃以上の温度にて窒化処理を施し、該窒化処理部分にN:3at%以上8at%未満を含有させた後、500℃以下Ms点以上の温度域まで1℃/s以上の速度で冷却し、その後Ms点以上500℃以下の温度域に10min以上保持してHV650以上の硬質相を、前記窒化処理部分に形成する。 (もっと読む)


【課題】必ずしも鋼中に高濃度の合金元素を含有させることなく、冷間加工性および最終部品強度を兼備し、さらには高温使用環境における強度にも優れた部品が得られる機械構造用の鉄系材料について提案する。
【解決手段】C:0.1mass%以上1.5mass%以下を含有し、残部Feおよび不可避的不純物の成分組成を有し、少なくとも一部に窒化処理による硬質相を有し、該硬質相は、N:(3−[%C])at%以上(8−[%C])at%以下を含有し、かつ硬さがHV650以上とする。 (もっと読む)


【課題】浸炭処理を行った場合に、結晶粒粗大化を起こしぬくく、靱性に優れた機械構造用鋼を提供すること。
【解決手段】質量%で、C:0.10〜0.30%、Si:0.05〜2.0%、Mn:0.10〜0.50%、P:0.030%以下、S:0.030%以下、Cr:1.80〜3.00%、Al:0.005〜0.050%、Nb:0.02〜0.10%、N:0.0300%以下を含有し、残部Feおよび不可避不純物からなり、冷間加工前の組織がフェライト・パーライト組織で、そのフェライト粒径の平均値が15μm以上であり、図1に示す熱処理を行った耐結晶粒粗大化特性および靱性に優れた機械構造用鋼。 (もっと読む)


【課題】電磁弁等の磁気回路部分を構成する磁性材料として用いるのに適した非磁性部を有する強磁性鋼材およびその製造方法を提供する。
【解決手段】質量%で、C:0.3%以下、Si:0.04〜3.0%以下、Mn:0.1〜2.2%以下、Cr:10〜26.5%以下、N:0.02%以下及びNi:3.0%以下を含有し、残部がFe及び不可避的不純物からなる、強磁性鋼材の少なくとも一部に、Nを固溶富化した非磁性部を形成し、該非磁性部の最大透磁率が前記強磁性鋼材の最大透磁率の10分の1以下であることを特徴とする。 (もっと読む)


【課題】 自動車や産業機械などのギヤやシャフトなどの動力伝達用部品として用いる機械構造用鋼で、被削性の低下を抑えてねじり疲労強度を向上させた鋼材を提供する。
【解決手段】 質量%で、C:0.15〜0.35%、Si:0.30〜0.95%、Mn:0.10〜1.00%、P:0.030%以下、S:0.030%以下、Cr:1.20〜2.30%、Cu:0.30%以下、Al:0.008〜0.100%、O:0.0030%以下、N:0.0020〜0.0300%を含有し、残部Fe及び不可避不純物からなり、下記の(1)式を満足する鋼であり、図2に示す浸炭焼入焼戻しを行ない、被削性を低下させることなくねじり疲労強度に優れた機械構造用鋼からなる鋼材。
6.0%≧2C+5Si+Cr−3Mn≧2.0%・・・(1) (もっと読む)


【課題】冷間鍛造性と冷間鍛造後の被削性に優れ、冷鍛窒化部品に高い芯部硬さ、高い表面硬さ及び深い有効硬化層深さを具備させることが可能な冷鍛窒化用鋼材の提供。
【解決手段】C:0.01〜0.15%、Si≦0.35%、Mn:0.10〜0.90%、P≦0.030%、S≦0.030%、Cr:0.50〜2.0%、V:0.10〜0.50、Al:0.01〜0.10%、N≦0.0080%及びO≦0.0030%を含有し、残部はFe及び不純物からなり、[399×C+26×Si+123×Mn+30×Cr+32×Mo+19×V≦160]、[20≦(669.3×logeC−1959.6×logeN−6983.3)×(0.067×Mo+0.147×V)≦80]、[140×Cr+125×Al+235×V≧160]及び[90≦511×C+33×Mn+56×Cu+15×Ni+36×Cr+5×Mo+134×V≦170]である化学組成を有し、組織がフェライト・ベイナイト組織又はフェライト・パーライト・ベイナイト組織で、ベイナイトの面積率が30%超〜95%であり、抽出残渣分析による析出物中のV含有量≦0.10%である冷鍛窒化用鋼材。 (もっと読む)


1 - 20 / 520