説明

Fターム[5C059MA21]の内容

TV信号の圧縮、符号化方式 (95,325) | 符号化方式 (14,514) | 直交変換符号化→MC〜 (3,642)

Fターム[5C059MA21]の下位に属するFターム

Fターム[5C059MA21]に分類される特許

1 - 20 / 650


【課題】記録される動画像に臨場感を確保しつつ、動画像としての質を向上させる。
【解決手段】動画撮影中にMPEG方式におけるGOPを処理単位として、GOPの先頭フレームタイミングA〜Eでカメラ本体の水平方向の傾きを検出し、検出した傾きに応じて各フレーム画像における水平方向の傾きの補正に向けた補正値を決定する。決定した補正値をGOP内の全フレーム画像に適用し、回転方向及び回転量が同一の回転処理をそれぞれ施す。動画像を構成する各フレームの画像の水平方向がカメラ本体の揺動に伴い変化するときの変化幅(揺れ幅)を狭くすることができる。 (もっと読む)


【課題】外部メモリアクセス量を低減して、回路コスト、消費電力の小さい画像復号化装置および画像復号化方法を提供することを目的とする。
【解決手段】動き補償を伴う復号化を行う画像復号化装置100であって、動き補償の対象の1つのブロックを基準とする、参照ピクチャ内の参照画素の存在範囲である参照範囲を特定する参照範囲特定部110と、復号化済みの画素データを記憶する第二メモリ108と、参照画素データを保持するための参照画素バッファ112と、参照範囲特定部110によって特定された参照範囲を含む領域の画素データを第二メモリ108から参照画素バッファ112にコピーする参照画素読み出し制御部111と、参照画素バッファ112にコピーされた参照画素データを用いた動き補償により、補間画素データを生成する動き補償部106と、補間画素データを用いて復号化済みの画素データを生成する画素値復号化部104とを備える。 (もっと読む)


【課題】誤り隠蔽処理を行う範囲を適正にして、画質の劣化を低減することができる動画像エラー処理装置を得ることを目的とする。
【解決手段】システム復号化部2及びビデオ復号化部3によりエラーが検出された場合、ビデオ復号化部3から出力されたデコード位置情報を参照して、システム復号化部2によりエラーが検出されたデコード位置を特定し、そのデコード位置を誤り隠蔽処理の開始位置に決定する誤り隠蔽位置決定部9を設け、誤り隠蔽位置決定部9により決定された開始位置から誤り隠蔽処理を開始する。これにより、適正な範囲で誤り隠蔽処理が行われるようになる。 (もっと読む)


【課題】符号化時と復号時における参照画像の不一致を起こすことなく、動画像を分割領域ごとに符号化する。
【解決手段】動きベクトル出力部11は、分割画像内の符号化対象領域に類似する領域を、同じ位置の他の分割画像に基づく参照画像から探索するための輝度成分の動きベクトルとフィールド種別とを出力し、参照領域判定部12は、符号化対象領域のフィールド種別と動きベクトル出力部11からのフィールド種別との組み合わせごとに参照画像31の境界外にあらかじめ設定された参照禁止領域を、動きベクトル出力部11からの輝度成分の動きベクトルに基づく色差成分の動きベクトルが指示するか否かを判定し、指示すると判定された場合、動きベクトル出力制限部13は、その輝度成分の動きベクトルが、符号化対象領域に最も類似する領域を指示する動きベクトルとして出力されることを禁止する。 (もっと読む)


【課題】画像符号化における過完備な基底を用いた冗長変換において,エネルギーコンパクションの向上を実現する閾値設定により,変換係数の適切な絞り込みを行い,符号化効率を向上させる。
【解決手段】符号化対象信号に対して冗長変換部10によって冗長系の変換基底を用いた変換を行い,更新変換係数算出部12によって,設定された閾値による変換係数のクリッピングを行い,更新変換係数を算出する。閾値の設定では,閾値設定部11,閾値更新処理部15によって適応的に閾値を変化させ,評価部16によってエネルギーコンパクションに関する評価尺度を最大化する閾値の選択を行い,最終的にエネルギーコンパクションを最大化する変換係数の選択を行う。 (もっと読む)


【課題】所定ブロックの画像データをマクロブロック単位で挿入する構成を簡略化できるようにする。
【解決手段】入力される動画像の各フレームを任意のブロックサイズに分割し、ブロックごとに符号化を行う画像符号化装置に、前記ブロックの各符号化要素を二値化して二値化データを生成する二値化手段と、二値化データの符号長を前記二値化データに付加する符号長付加手段と、前記二値化データの符号長に応じて、前記二値化手段によって生成された二値化データを選択したり、またはI_PCMデータをダミーデータとして選択したりするデータ選択手段とを設け、入力される動画像の各フレームから生成した二値化データの符号長に応じて、二値化データを選択したり、またはダミーデータとして挿入されたI_PCMデータを選択したりするようにして、I_PCMデータをマクロブロック単位で挿入する構成を簡略化できるようにする。 (もっと読む)


【課題】 ブロック毎にスキャン順序が変更されるスキャン変換処理を利用しながらも、スキャン変換処理を並列に実行できる場合には並列実行することで、単位時間当たりのスキャン変換するブロック数をこれまで以上にする。
【解決手段】 スキャン状態保持部103は、ブロック内の係数の出現頻度値に基づく統計情報を保持する。スキャンオーダ保持部102は、ブロック内の各係数位置をスキャン順序に並べた係数位置情報を保持する。並列処理判定部104は、スキャン状態保持部103に保持された統計情報に基づき、並列処理できるブロック数を決定し、その決定結果を制御信号としてスキャン変換部101に供給する。スキャン変換部101は、並列処理判定部104からの制御信号が並列処理を示す場合には、入力した2つのブロックのスキャン変換を並列に処理する。 (もっと読む)


【課題】色差を重視して符号化する場合に限らず、輝度を重視して符号化する場合にも、リアルタイム処理に適用可能な少ない処理量で、画質の向上を図ることができる動画像符号化装置を得ることを目的とする。
【解決手段】符号化設定情報が示す符号化の設定内容に応じてクロマQPオフセットを決定するクロマQPオフセット決定部11を設け、H.264/AVCエンコードコア部12がマクロブロック毎に圧縮符号化を実施する際、クロマQPオフセット決定部11により決定されたクロマQPオフセットに応じて、動画像データにおける輝度信号及び色差信号に割り当てる符号量を設定する。 (もっと読む)


【課題】通常の画像符号化方式と互換性を持たせたままで、回路規模、メモリ容量、メモリバンド幅を殆ど増加させずに高ビット精度の画像符号化を実現する。
【解決手段】標本値入力部101から入力される標本値は、量子化条件生成部203に入力されて、その標本値に対する量子化条件(最低値M、量子化幅Q)が求められる。入力された標本値は減算器201において、量子化条件生成部203で生成される最低値Mを減算される。最低値Mを減算された標本値は、量子化部202において、量子化条件生成部203で生成される量子化幅Qに従って量子化されて出力部から出力される。また量子化されたデータは逆量子化部206で伸張され、加算器205で最低値Mを加算されて標本値に復元される。 (もっと読む)


【課題】所定の期間内に符号化処理を完了することができる画像符号化装置を提供する。
【解決手段】入力画像をブロック毎に符号化する画像符号化装置100であって、予測処理及び変換処理を行うことで変換データを生成する予測・変換処理部102と、変換データを復号することで再構成画像を生成するローカルデコード部103と、ローカルデコードバッファ104と、変換データを符号化することで符号化データを生成するエントロピー符号化部105と、符号化データと再構成画像とのいずれか一方を選択する切り替え部108と、符号化データの符号量が閾値より大きいかを判定する判定部106と、符号量が閾値より大きい場合、符号化データに対応するブロックと符号化されていないブロックの内1つ以上のブロックとをI_PCMに変更する制御部107とを備え、切り替え部108は、符号化タイプがI_PCMである場合、再構成画像を出力する。 (もっと読む)


【課題】対象ブロックの境界から遠く離れた画素に対する予測精度を高め、符号化効率を高める。
【解決手段】画像予測符号化装置は、入力画像を複数のブロックに分割する領域分割手段と、複数のブロックのうち処理対象である対象ブロックに含まれる画素信号に対し予測信号を生成する予測信号生成手段と、対象ブロックの画素信号と予測信号との残差信号を生成する残差信号生成手段と、残差信号を符号化することで圧縮信号を生成する信号符号化手段と、圧縮信号を復元し該復元された信号を再生画素信号として格納する格納手段と、を備え、予測信号生成手段は、対象ブロックを複数の小領域に再分割し、小領域の少なくとも1つが非正方形であり、非正方形の小領域の第1の辺の長さは、該第1の辺と異なる第2の辺の長さよりも長い。 (もっと読む)


【課題】従来の構成では、何らかのイベントが発生し、監視映像に変化があったとしても、受信側でそれを検知するには、圧縮された符号化ストリームを復号化してからでないと確認することが難しいという問題があった。
【解決手段】イントラ予測部と、動き補償予測部とを適応的に切替えて参照予測画像を生成する画像圧縮伸張装置において、所定単位時間内に生成される前記参照予測画像が前記どちらの予測部を用いて生成されたものであるかを示す識別フラグを累積し、前記識別フラグの増減を予測選択情報として符号化ストリームのヘッダに付加して送信する構成とする。 (もっと読む)


【課題】複数ストリームの結合時にバッファ破綻が起こらないセグメントエンコードを,画質変動を抑制しつつ簡易に実現できるようにする。
【解決手段】仮レート計算部12によって本来の目標レートよりも小さい仮目標レートを設定し,仮想バッファサイズ計算部13によって本来のバッファサイズよりも小さい仮想バッファサイズを設定する。符号量制御部15は,仮目標レートおよび仮想バッファサイズに従って符号量の制御を行い,バッファ推移計算部14では,発生符号量と,本来の目標レートおよびバッファサイズとからデコード用時刻情報を決定する。 (もっと読む)


【課題】動きベクトル探索のための演算量は減らしながら、精度の高い動きベクトルの探索を行うことができるようにする。
【解決手段】既に符号化済の画像を復号した縮小画像を用いて簡単な探索を行う一次探索手段と、より詳細な探索を行う二次探索手段とを有する動画像符号化装置において、符号化済の画像を復号して第1の縮小画像を生成する第1の縮小画像生成手段と、前記入力された画像信号から、前記第1の縮小画像と同じ縮小率で第2の縮小画像を生成する第2の縮小画像生成手段と、前記第1の縮小画像を用いて簡単な探索を行うことが可能であるか否かを判断する判断手段とを設け、前記第1の縮小画像を用いて簡単な探索を行うことが可能であると判断した場合には前記第1の縮小画像を用い、不可能であると判断した場合には前記第2の縮小画像を用いて動きベクトル探索をするように、適応的に切り替える。 (もっと読む)


【課題】
ノイズの多いような画像に対しても良好な符号量制御を実現する。
【解決手段】
縮小画像生成部32は、フレーム並び替え部12によって並べ替えられたフレーム画像から縮小画像を生成する。ブロック化部34は、ブロック化部34は、ブロック化部14で生成されるマクロブロックに画面上で対応するマクロブロックを縮小画像に対して生成する。動き検出部36は、縮小画像データからマクロブロック毎の動きベクトルを検出する。動き検出部36は、ブロック化部34によるマクロブロック単位でピクチャタイプに従い動き予測の予測誤差を算出する。符号量制御部42は、符号化対象ピクチャの目標符号量と、動き検出部36からのマクロブロック毎の予測誤差と、カメラ信号処理部11からのゲイン情報から、マクロブロック毎の目標符号量を決定し、量子化部20の量子化パラメータを制御する。 (もっと読む)


【課題】 目標符号量までの残りの符号量に応じて符号語を切り替えることで、符号語を目標符号量内に収め、係数の復元を可能とする。
【解決手段】 画像を符号化する際に、画像が直交変換され、量子化された直交変換係数と、ゼロのランレングスデータとを入力し、直交変換係数とゼロのランレングスデータとに基づいて符号化を行い、符号の符号量を出力する。符号量から目標符号量までの残りの符号量を算出し、符号化では、その残りの符号量に応じて、予め定められた符号量の符号に符号化する。 (もっと読む)


【課題】符号化効率の低化を抑えながら、笑顔や泣き顔等の表情があるシーンを基準フレームとして作成し、迅速な再生及び容易な編集を行うことができるようにする。
【解決手段】複数のフレームから成る入力画像信号を解析して顔を識別するための顔情報を作成する顔情報作成手段と、前記入力画像信号を、フレーム間予測方式を利用して圧縮符号化する符号化手段と、前記顔情報作成手段により作成された顔情報に基づき、前記符号化手段においてフレーム間予測を行う際に、フレームを飛び越した参照を禁止するか否かを判定する禁止判定手段と、前記禁止判定手段により、前記顔情報がフレームを飛び越した参照を禁止する禁止条件に適合すると判定された場合に、飛び越し参照を禁止する基準フレームを設定する設定手段とを設け、ランダムアクセス可能なピクチャタイプ(IDRピクチャ)で符号化を行う。 (もっと読む)


【課題】従来の補間方法を用いてLOT圧縮を行うと、LOT圧縮後の画像の有効画素が減るとともに、無駄な画素データが多く含まれる結果となり、表示される画像の画質が低下する。
【解決手段】補間部13では、入力された入力画像のサイズを確認し、縦・横の有効画素数が半ブロック単位(または、ブロック単位)の整数倍になっていない場合は、第1補間部13Aにより、不足数に応じて入力画像の周囲に画素を補間し、第1補間領域とする。その後、第2補間部13Bにより、第1補間領域の周囲に第2の補間領域を作成し、補間画像を作成して出力する。この場合に、例えば、第1補間領域においては境界値コピーによる補間を行い、第2補間領域では折り返しによる補間を行う。 (もっと読む)


【課題】撮像する対象に応じて最適な直交変換処理を行うことができる、画像圧縮装置、を提供する。
【解決手段】二次元直交変換部20において、周波数特性変更設定部21は、周波数特性設定信号Aに応じて、複数種類のフィルタ係数の中から周波数解析フィルタ部30に設定適用するフィルタ係数を選択し、該選択したフィルタ係数を周波数解析フィルタ部30に向けて出力する。周波数解析フィルタ部30では、周波数特性変更設定部21から出力されるフィルタ係数に応じて、画像データの解析に使用する周波数特性を変更設定する。これにより、撮像対象応じて最適な直交変換処理を行うことができる。 (もっと読む)


【課題】直交変換演算において使用されるメモリ(直交変換演算の中間結果を保持するメモリのサイズ)を低減することができる画像圧縮装置を提供する。
【解決手段】本発明の画像圧縮装置では、垂直重複直交変換処理部31により、8×16のハーフブロック0,1,2のサイズで分割されたデータに対し、垂直方向に直交変換演算処理を行い、8×8のデータとして中間メモリ部32内の中間メモリ0,1,2にそれぞれ格納する。次に、水平重複直交変換処理部33により、中間メモリ0,1,2から隣接する2つのデータ(16×8)を読み出して、水平方向に直交変換演算処理を行い、8×8の圧縮データを得る。 (もっと読む)


1 - 20 / 650