説明

Fターム[5F003BA92]の内容

バイポーラトランジスタ (11,930) | 素子構造 (1,262) | 空乏層制御構造 (403) | メサ、ベベル (349)

Fターム[5F003BA92]に分類される特許

141 - 160 / 349


【課題】いわゆるメサ型の半導体装置において、耐圧の向上を図ると共に高信頼性の半導体装置及びその製造方法を提供することを目的とする。
【解決手段】レジスト層をマスクとした異方性エッチングで絶縁膜5及び半導体基板1を選択的に除去し、半導体基板1の主面に対して実質的に垂直な側壁を有する溝8を形成する。次に、溝8に対して等方性エッチングする。これにより、溝8の内壁に生じた荒れは除去されて、溝8の内壁が平坦化される。また、同時に水平方向にもエッチングが進行し、溝8の上部10は、半導体基板1の表面側に近付くにつれて広がるように傾斜する。次に、溝8内にパッシベーション膜11を形成する。次に、所定のダイシングラインに沿って半導体基板1等を切断し、チップ状の個々の半導体装置を得る。 (もっと読む)


【課題】DAT技術を利用した電力増幅器において、能動素子として高耐圧トランジスタを用いた場合に、その特性を十分に活用することができる技術を提供する。
【解決手段】3個のほぼ等価なプッシュプル増幅器を具備している。プッシュプル増幅器における1対のトランジスタ3A〜3Fのドレインは、金属配線1A〜1Hから成る電流経路により相互に接続され、電流経路の中間点が正電源Vddに接続されている。金属配線1A〜1Hのうちトランジスタのドレインからその正電源Vddに至る部分が1本の1次コイルを構成する。1次コイルが、それらと近接して配置された金属配線2から成る2次コイルと磁気的に結合することにより、1次コイルからの出力を合成し2次コイルの出力端子から出力する。1本の1次コイルに相当する金属配線の長さに対する、2次コイル全体に相当する金属配線の長さの比が、およそ3である。 (もっと読む)


【目的】 本発明は上記の状況に鑑みてなされたもので、窒化ホウ素膜を用いて
表面保護および表面不活性化を実現できる半導体表面処理、成膜方法およびその
表面保護技術や表面下活性化技術を用いて作製した高性能半導体装置並びに半導
体装置を含む通信システムの電子装置を提供することを目的とする。
【解決手段】少なくともホウ素及び窒素原子を含むことを特徴とする膜を有する
ことを特徴とする。 (もっと読む)


【課題】ベース・コンタクト(21)が設けられたベース領域(1)と、ベース領域から少数キャリアを抽出するように構成されたエミッタ領域およびコレクタ領域(2、3)と、ベース・コンタクトを経由してベース領域内への少数キャリアの侵入を妨げるための排除構造とを有する縦型構造のバイポーラ・トランジスタを提供する。
【解決手段】ベース領域は、0.5eVよりも大きいバンドギャップおよび1017cm−3よりも大きいドーピング・レベルを有する。ベースは、ベース・コンタクト(21)からのキャリアの侵入を防止する排除用ヘテロ接合(4)を含むが、その代わりにベース領域は、「高−低」ドーピングホモ接合を備えている。当該構造は、マルチフィンガー・トランジスタにおいてさえも熱暴走に対して改善された抵抗を示す。このことは、高電力、高周波数トランジスタ、例えば、ヒ化ガリウムインジウム上のベース、に対して特に有用である。 (もっと読む)


【課題】InP基板に擬似格子整合もしくは格子整合させたデバイス層を形成し、そのデバイス層よりInP基板を剥離して、InP基板の再利用を可能とする。
【解決手段】インジウムリン(InP)基板11上に擬似格子整合もしくは格子整合する犠牲層12を形成する工程と、前記犠牲層12上にデバイス層13を形成する工程と、前記犠牲層12を除去することで前記InP基板11と前記デバイス層13とを分離する工程とを備えたことを特徴とする。 (もっと読む)


【課題】携帯電話機などに使用されるRFパワーモジュールの小型化を推進することのできる技術を提供する。
【解決手段】RFパワーモジュールの増幅部が形成される半導体チップの内部に方向性結合器を形成する。半導体チップの増幅部となるLDMOSFETのドレイン領域に接続するドレイン配線35cと同層に方向性結合器の副線路32を形成する。これにより、所定のドレイン配線35cを主線路とし、この主線路に絶縁膜を介して平行に配置された副線路32で方向性結合器を構成する。 (もっと読む)


【課題】P型4H−SiC上のオーミック電極の形成方法およびそれにより形成されたオーミック電極を提供する。
【解決手段】P型4H−SiC基板上に、厚さ1〜60nmの第1Al層と、Ti層と、第2Al層とを順次堆積する堆積工程、および非酸化性雰囲気中での熱処理により、上記第1Al層を媒介として上記SiC基板と上記Ti層との合金層を形成する合金化工程を含むことを特徴とするP型4H−SiC基板上のオーミック電極の形成方法。この方法により形成されたP型4H−SiC基板上のオーミック電極も提供される。 (もっと読む)


【課題】 本願発明は、高利得で高速動作に適したバイポーラトランジスタを提供するものである。より具体的な技術的な側面では、本願発明はトランジスタを微細化した際に、高利得と高速性を実現できるバイポーラトランジスタを提供することにある。
【解決手段】 本願発明は、ベース領域の側面に、ベース領域よりバンドギャップが広い外部ベース領域を設けた構造を有する。ベース領域はシリコン・ゲルマニウムが代表例である。 (もっと読む)


【課題】良好なコンタクト特性を有するベース電極を再現性良く実現できるヘテロ接合バイポーラトランジスタとその製造方法を提供することにある。
【解決手段】
本発明のヘテロ接合バイポーラトランジスタは、半絶縁性InP基板1上に、N型InGaAs/InAlGaAs/InPコレクタ層3、P型InGaAsベース層4およびN型InPエミッタ層5が順次積層されている。更に、N型InPエミッタ層5はInPレッジ層構造7を備え、ベース電極10は、内部ベース電極12と外部ベース電極13から構成されており、内部ベース電極12は、コレクタメサ領域の外周部を自己整合的に規定しつつ、InPレッジ層構造7と接触し、外部ベース電極13の一部が、内部ベース電極12上に形成され、かつ、外部ベース電極13の残りの部分が、コレクタメサ領域外に形成された埋め込み層14上に形成されている。 (もっと読む)


【課題】半導体装置の耐湿性向上を図ることができる技術を提供する。
【解決手段】半絶縁性基板であるGaAs基板40において、素子形成領域にHBT30を形成し、絶縁領域に素子分離領域47を形成する。絶縁領域に形成される素子分離領域47は、HBT30のサブコレクタ用半導体層41とコレクタ用半導体層42と同層の半導体層にヘリウムを導入することにより形成されている。外周領域において、保護膜52、55から露出するように導電層49を形成し、この導電層49を裏面電極と接続する。裏面電極にはGND電位が供給されるので、導電層49はGND電位に固定される。この導電層49は、HBT30のサブコレクタ用半導体層41とコレクタ用半導体層42と同層の半導体層により形成される。 (もっと読む)


【課題】BICMOS統合のために選択的エピタキシャル成長を用いる、隆起した外因性自己整合型ベースを有するバイポーラ・トランジスタを提供する。
【解決手段】隆起した外因性自己整合型ベースを有する高性能バイポーラ・トランジスタが、CMOSデバイスを含むBiCMOS構造と統合される。パッド層を形成して、先在するCMOSデバイスのソースおよびドレインに対して真性ベース層の高さを隆起させることにより、かつ選択的エピタキシを介して外因性ベースを形成することにより、表面の凹凸の影響は、外因性ベースのリソグラフィによるパターン形成時に最小になる。また、バイポーラ構造の製作の間に、化学機械研磨プロセスを使用しないことにより、プロセス統合の複雑さが軽減される。内側のスペーサまたは外側のスペーサが、エミッタからベースを分離するために形成されうる。パッド層、真性ベース層、および外因性ベース層は、一致した外側の側壁表面を有するメサ構造を形成する。 (もっと読む)


【課題】信頼性に優れた半導体装置の製造方法および半導体装置を提供すること。
【解決手段】半絶縁性InP基板1上にInGaAsバッファー層2、InPサブコレクタ層3、InGaAsコレクタコンタクト層4、InP層5、InGaAsコレクタ層6、InGaAsベース層7、薄膜InP層8を順次積層し、薄膜InP層8上にシリコン窒化膜9を堆積し、それの開口部内においてInPエミッタ層10、InP層11、InGaAsエミッタコンタクト層12を順次エピタキシャル再成長させ、エミッタコンタクト層12表面全体を含むようにエミッタ電極メタル13を形成し、シリコン窒化膜9を開口部周辺の一部を残して除去し、露出した薄膜InP層8を除去し、ベース層7を露出させる工程を有するヘテロ接合バイポーラトランジスタの製造方法を構成する。 (もっと読む)


【課題】期待される高周波特性を得ること、ならびに後続の回路で必要とされる駆動電流を得ることが可能なホットエレクトロントランジスタを提供する。
【解決手段】このホットエレクトロントランジスタ100は、コレクタ層3と、ベース層5と、エミッタ層7と、コレクタ層3とベース層5との間に形成されたコレクタバリア層4と、ベース層5とエミッタ層7との間に形成されたエミッタバリア層6とを備えている。そして、エミッタバリア層6とエミッタ層7との間のエネルギー障壁は実質的に存在しないとともに、コレクタバリア層4のエネルギー障壁の高さはエミッタバリア層6のエネルギー障壁の高さよりも低い。 (もっと読む)


【課題】エミッタ層の寸法幅を微細化し、半導体装置の高性能化を図る技術を提供する。
【解決手段】n型のコレクタ層2の活性領域上にp型のSiGe合金層6aと断面凸状のp型のシリコン膜7aとが形成され、シリコン膜7a内の上部にはエミッタ層として機能するn型のエミッタ拡散層13が形成されている。エミッタ拡散層13上にはエミッタ電極であるn型の多結晶シリコン膜8aおよびシリコン窒化膜9aが形成されている。多結晶シリコン膜8aの側面およびシリコン膜7aの表面に表面絶縁膜10が設けられるとともに、多結晶シリコン膜8aとシリコン膜7aとの界面50に沿って、多結晶シリコン膜8aの外側から内側に向かって突出するシリコン酸化膜からなる突出部10aが設けられている。 (もっと読む)


本発明は、一態様では、半導体デバイスを製作する方法を提供する。一態様では、この方法は、バイポーラ・トランジスタのタブの二重の注入を実現する。バイポーラ領域内のタブは、MOSトランジスタの製作時に、非バイポーラ領域内に異なる電圧のデバイスを製作するためのMOSに関連するタブに注入するのにも用いられる別々の注入マスクを通じてタブに注入することによって注入される。
(もっと読む)


2つの別個の成長過程を用いて統合BiFETを製作するための方法及びシステムを開示する。本発明を実施すると、BiFETのFET部分が第1製作環境で製作される。本発明を実施すると、BiFETのHBT部分が第2製作環境で製作される。FET部分とHBT部分の製作を2つ以上の別々の反応器内に分離することで、最適な装置性能が両方の装置で達成される。
(もっと読む)


【課題】電極のパターン異常及び電気特性の劣化を防ぐことのできる半導体装置の製造方法を提供する。
【解決手段】GaAsから構成される部分を有する半絶縁性のGaAs基板1を備える半導体装置の製造方法であって、最上層がTiから構成される層である積層構造を有し、かつPtを含むTi/Pt/Au/Ti電極6a及び7aを半絶縁性のGaAs基板1上に形成する工程と、AuGeを含むコレクタ電極8をGaAsから構成される部分上に形成する工程と、Ti/Pt/Au/Ti電極6a及び7a並びにコレクタ電極8の双方の電極が表面に露出した状態でコレクタ電極8を熱処理する工程とを含む。 (もっと読む)


電子デバイス(10、10’、10’’、10’’’、100、100’、100’’、100’’’、1000)は、第1の導電性タイプの一次ナノワイヤ(18)と、一次ナノワイヤから外側に延在する、第2の導電性タイプの二次ナノワイヤ(24)とを備える。第2の導電性タイプのドープ領域(26)が、二次ナノワイヤ24から一次ナノワイヤ(18)の少なくとも一部内に延在する。
(もっと読む)


【課題】ELOにおける配線の高密度化、デバイス特性の向上を図ること。
【解決手段】本発明は、半導体基板10に犠牲層を介して成長させたデバイス層に所定のデバイスおよび接続用パッドを形成する工程と、支持基板20に所定のパターンおよび接続用パッドを形成する工程と、半導体基板10の接続用パッドと支持基板20の接続用パッドとが接続金属を介して導通するよう半導体基板10と支持基板20とを貼り合わせる工程と、半導体基板10と支持基板20とを貼り合わせた状態で犠牲層をエッチングにより除去して半導体基板10とデバイス層とを分離する工程とを備える半導体装置の製造方法である。 (もっと読む)


【課題】順方向電圧の増加を抑制できるバイポーラ型半導体素子を提供する。
【解決手段】pinダイオード70はn型4H型SiC基板21とSiC基板21上に形成されたドリフト層23を備える。ドリフト層23はドナー密度が1×1013cm−3で膜厚は200μmである。順方向電流密度100A/cmでの通電開始直後の順方向電流電圧特性K1と、1時間通電後の順方向電流電圧特性K2との順方向電圧差ΔVfは、0.1V以下であり、ほとんど差がなかった。 (もっと読む)


141 - 160 / 349