説明

Fターム[5J055GX02]の内容

電子的スイッチ (55,123) | 回路の表現形式 (6,945) | ブロック図 (1,507)

Fターム[5J055GX02]に分類される特許

201 - 220 / 1,507


【課題】制御対象負荷の数が増えたとしてもオンオフ両タイミングをずらすことができ、電源変動勾配を抑制できるようにした負荷制御装置を提供する。
【解決手段】マイコンは、メモリのオンタイミング記憶領域に複数の負荷間で互いに重ならないようにオンタイミングのフラグを記憶させる。また、メモリのオフタイミング記憶領域に対し複数の負荷間で互いに重ならないようにオフタイミングのフラグを記憶させる(S10〜S14)。マイコンは、これらのオンタイミング、オフタイミングに応じて複数の負荷を駆動制御する(S15)。 (もっと読む)


【課題】回路構成の複雑化、消費電流の増加、特性低下を防止することができ、レイアウト面積の削減を図れるレベル変換回路および表示装置、並びに電子機器を提供する。
【解決手段】バイアス部12は、第5のNMOSトランジスタNT15と、抵抗素子R11を含む降圧部16と、電圧源15に接続された電流源I11と、を含み、第5のNMOSトランジスタNT15のソースが第1電圧源14に接続され、ドレインが抵抗素子R11の一端に接続され、抵抗素子R11の他端が電流源I11に接続され、第5のNMOSトランジスタNT15のゲートが抵抗素子R11の他端側に接続され、第1電圧から第1および第2のNMOSトランジスタNT11,NT12のしきい電圧分高く、または第1電圧より高くこのしきい値電圧より低いバイアス電圧を抵抗素子の一端側に生成し、レベル変換部11の第1および第2のNMOSトランジスタNT11,NT12のゲートに供給する。 (もっと読む)


【課題】駆動信号がスイッチング素子のオフを指示しているにもかかわらず、制御端子の電圧が低下せず、スイッチング素子をオフできない場合であっても、スイッチング素子の熱破壊を防止できる電子装置を提供する。
【解決手段】制御回路は、正常時に、オン駆動用FET121aがオフするタイミング(t6)、オフ駆動用FET122aがオンするタイミング(t7)、及び、オン保持用FET123aがオンするタイミング(t9)の後であって、駆動信号がIGBT110dのオン指示からオフ指示に切替わるタイミング(t5)から一定の時間Toffの経過後に、オン保持用FET123aをオンする(t10)。そのため、オン駆動用FET121aがオン故障し、駆動信号がIGBT110dのオフを指示しているにもかかわらずIGBT110dをオフできない異常状態であっても、IGBT110dを確実にオフできる。従って、IGBT110dの熱破壊を防止できる。 (もっと読む)


【課題】負バイアス発生回路を用いずにマージン電圧を改善することができる手段をスイッチ回路に提供する。
【解決手段】N型MOSFETを用いて構成されるスイッチM1を、信号をアンテナに同通するスイッチに、P型MOSFETを用いて構成されるスイッチM2を、信号を接地するシャント用にそれぞれ用いる。各スイッチを構成するMOSFETのゲート端子に共通の制御信号を入力する。この制御信号の反転信号をスイッチM2の接地端に接続することで、各MOSFETのゲート端子の電位を接地電圧に設定できる。 (もっと読む)


【課題】回路面積および製造コストの増大を招くことなく、ゲート電圧をクランプ値に収束するまでの応答時間を短くすることができるゲート駆動回路を提供する。
【解決手段】トランジスタQ11に過電流が流れる異常が生じると異常検出信号SaがHレベルになり、スイッチS11がオンする。その状態において信号線L13、L12間の電位差がクランプ値を超えて上昇しようとすると、ツェナーダイオードD11が降伏し、その降伏電流の大部分が増幅用トランジスタT12のベース電流となる。増幅用トランジスタT12の増幅作用によって、降伏電流を増幅した電流がクランプ用トランジスタT11のベースに供給される。クランプ用トランジスタT11は、供給されるベース電流に応じたコレクタ電流を信号線L11、L12間に流す。これにより、信号線L11、L12間の電位差が低下する。 (もっと読む)


【課題】アンテナスイッチのコスト削減を図る観点から、特に、アンテナスイッチをシリコン基板上に形成された電界効果トランジスタから構成する場合であっても、アンテナスイッチで発生する高調波歪みをできるだけ低減できる技術を提供する。
【解決手段】RXスルートランジスタ群TH(RX)は、互いに直列に接続されたMISFETQ1〜Q5において、それぞれのMISFETのボディ領域と、隣接するMISFETのソース領域あるいはドレイン領域とを、それぞれ、ダイオード(整流素子)を介して接続する。そして、特に、nチャネル型MISFETの場合、MISFETのボディ領域から隣接するMISFETのソース領域あるいはドレイン領域へ向う向きが順方向となるようにダイオードを接続する。 (もっと読む)


【課題】最小限の突入電流の発生にとどめることを課題としている。
【解決手段】
本発明は、誘導負荷、特に発電機(12)の巻き線(13)を所定の交流中間電圧に接続するための方法に関し、誘導負荷は、ブレーカー(17)を用いて中間電圧に接続されている。突入電流を減少させるために、中間電圧が所定の位相にある場合に、接続がなされるように調節される。 (もっと読む)


【課題】 内部回路の内部ノードが初期状態に設定されたことを精度よく検出し、内部回路が動作を開始するまでの復帰時間を短縮する。
【解決手段】 第1電源スイッチは、内部電源電圧を受けて動作する内部回路の動作を開始させるための第1電源オン信号の活性化中に、外部電源線を内部電源電圧が供給される内部電源線に接続する。第2電源スイッチは、第2電源オン信号の活性化中に、外部電源線を内部電源線に接続する。検知部は、第1電源スイッチのオンにより上昇する内部電源電圧を受けて動作する回路を含む。検知部は、内部電源電圧が第1電圧を超えることにより、内部回路の内部ノードが初期状態に設定されたことを検出したときに第2電源オン信号を活性化する。 (もっと読む)


【課題】簡素な構成の信号処理部で、複雑な波形の電流信号を発生させ、ドライバーを介して該電流信号に応じた波形の電流を各電磁石の励磁コイルに通電できる電磁石制御装置を提供すること。
【解決手段】複数の電磁石10を備え、各電磁石10の励磁コイルXに所定波形の励磁電流を通電することにより、隔壁で仕切られた空間内に発生したプラズマ分布を能動的に制御する電磁石制御装置であって、所定波形の励磁電流信号を生成する信号処理部13と、該信号処理部13からの所定波形の励磁電流信号S2を増幅して各電磁石10の励磁コイルに通電するドライバー11と、当該電磁石装置の各部に電力を供給する電源部17とを備えた電磁石制御装置。 (もっと読む)


【課題】コンデンサの容量を小さくでき安価にIC化できるゲート駆動回路。
【解決手段】直流電源V1の正極に起動抵抗R1を介して一端が接続された第1コンデンサC1と、第1電極と第2電極と第1制御電極とを有し第1コンデンサの一端に第1電極が接続され第2電極が直流電源の負極であるグランドに接続された第1スイッチQ3と、第3電極と第4電極と第2制御電極とを有し第3電極が第1スイッチの第2電極と直流電源の負極であるグランドに接続され第4電極が第1コンデンサの他端に接続された第2スイッチQ4と、第2スイッチの第3電極と第4電極とに並列に接続され一端が直流電源の負極であるグランドに接続された第2コンデンサC2と、パルス信号に基づきスイッチング素子のターンオフ時にスイッチング素子のゲートを第1コンデンサの他端及び第2コンデンサの他端に接続することによりスイッチング素子のゲートを負電圧にさせる負電圧制御部Q1,Q2とを有する。 (もっと読む)


【課題】回生電流がモータ等の負荷から駆動回路を構成するプリドライバ回路側に流れても、駆動回路の制御に影響を与えないようにすること。
【解決手段】第1の電源電圧(VM)に接続された第1の駆動トランジスタと、接地に接続された第2の駆動トランジスタとの間の負荷に接続される接続ノード(N1)を出力端子とするブリッジ回路に接続されたプリドライバ回路において、接続ノード(N1)である出力端子に接続された出力モニタ回路を有し、該出力モニタ回路を用いて、出力端子に現れる電圧(Vout)に基づいて電圧のみをフィードバックさせる第1のフィードバック信号(S1)を生成し、第1のフィードバック信号(S1)に基づいて第2のフィードバック信号(S2)を生成して、出力端子に現れる電圧(Vout)が第1の電源電圧(VM)に近づくように、第1の駆動トランジスタを駆動制御する。 (もっと読む)


【課題】動作速度の速いルックアップテーブル回路およびフィールドプログラマブルゲートアレイを提供する。
【解決手段】ルックアップテーブル回路1は、入力信号に基づいて複数の抵抗変化型素子の中から一つの抵抗変化型素子を選択する抵抗変化回路2と、抵抗変化回路2の最大抵抗値と最小抵抗値との間の抵抗値を有する参照回路4と、抵抗変化回路2の他端にソースが接続された第1のnチャネルMOSFET6と、参照回路の他端にソースが接続された第2のnチャネルMOSFET8と、第1のnチャネルMOSFET6のドレインを通して抵抗変化回路2に電流を供給する第1の電流供給回路10と、第2のnチャネルMOSFET8のドレインを通して参照回路4に電流を供給する第2の電流供給回路12と、第1のnチャネルMOSFET6のドレイン電位と第2のnチャネルMOSFET8のドレイン電位を比較する比較器14と、を備える。 (もっと読む)


【課題】所定の電流値以上の電流が流れることを検出すると、電源から遮断する過電流保護回路の偶発的な故障に起因して、所定の電流値以上の電流を継続して出力装置に流れるのを未然に防止することが可能な過電流保護装置を提供する。
【解決手段】この過電流保護装置5は、レーザ出力装置4に供給する電流値を監視するとともに過電流が流れた際に電流を遮断する過電流保護回路5aと、過電流保護回路5aが正常に動作するか否かを確認するトランジスタ32(TR2)、抵抗33(R4)、接点RY1−3、接点RY1−2、電源23、接点RY1−1、および、フォトカプラ34(PHC1)とを設ける。 (もっと読む)


【課題】複数の半導体スイッチを並列に接続して負荷の駆動、停止を制御する回路において、各半導体スイッチのオフ動作時間中に過電流が発生した場合に、いち早く半導体スイッチを遮断して、回路を保護することが可能な負荷駆動装置を提供する。
【解決手段】FET(T1)のオフ動作時間中においても該FET(T1)に流れる電流を検出する電流センサ17を備え、この電流センサ17で検出される電流Idが予め設定した閾値電流Ithを上回った場合に、立ち下げ回路16により、FET(T1)のゲート電圧を低下させる。従って、FET(T1)オフ動作時間を長く設定した場合で、このオフ動作時間中にショート故障が発生した場合であっても、即時にFET(T1)を遮断して負荷回路全体を過電流から保護することができる。 (もっと読む)


【課題】低電圧で動作可能なリセット回路を提供する。
【解決手段】リセット回路50Aは、Pチャネルの第1トランジスタ11を備え、第1電流i1が第1の値を超えると第1信号D1をアクティブとする第1回路10Aと、Nチャネルの第2トランジスタ21を備え、第2電流i2が第2の値を超えると第2信号D2をアクティブとする第2回路20Aと、電源電圧Vddの供給開始から、所定時間が経過した後に第3信号D3をアクティブとする第3回路30Aと、第1信号D1、第2信号D2、及び第3信号D3の全てがアクティブになるとリセット解除を指示するリセット信号RESを生成する論理回路40とを備える。 (もっと読む)


【課題】電源ユニットの出力ラインにおける地絡などの故障に対し、電源の保護及び故障の検知を行う。
【解決手段】サブ電源供給ラインLSに、サブ電源101側をソースとして第1MOSFET102を直列に接続し、第1MOSFET102のドレインにドレインを接続させて第2MOSFET103を直列に接続する。制御ユニット200内のサブ電源供給ラインLSにも、サブ電源101側をソースとして第3MOSFET202を直列に接続し、第3MOSFET202のドレインにドレインを接続させて第4MOSFET203を直列に接続し、第1〜第4MOSFETを制御することで、サブ電源101の電力を負荷201に対して供給する。各MOSFETのドレイン電圧、及び、第2MOSFET103と第3MOSFET202との間の電圧をモニタし、MOSFETの故障及びサブ電源供給ラインLSの故障を診断する。 (もっと読む)


【課題】電源電圧の変動に起因した書込電流の変動を抑制する。
【解決手段】ドライブ回路25において、第1のMOSトランジスタPMは、第1および第2の電源ノード28,29間にデータ書込線DLと直列に設けられる。第2のMOSトランジスタPSは、第1のMOSトランジスタPMと並列に設けられる。第3および第4のMOSトランジスタPa,Pbは、互いに同じ電流電圧特性を有する。第1の素子Eaは、第1および第2の電源ノード28,29間に第3のMOSトランジスタPaと直列に接続される。第2の素子Ebは、第1および第2の電源ノード28,29間に第4のMOSトランジスタPbと直列に接続され、第1の素子Eaの電流電圧特性曲線と交差する電流電圧特性を有する。比較器30は、第1の素子Eaにかかる電圧と第2の素子Ebにかかる電圧とを比較し、比較結果に応じて第2のMOSトランジスタPSをオンまたはオフにする。 (もっと読む)


【課題】端子切替時の挿入損失の増加を抑制した半導体スイッチを提供する。
【解決手段】実施形態によれば、電源回路部と制御回路部とスイッチ部とを備えた半導体スイッチが提供される。前記電源回路部は、内部電位生成回路と第1のトランジスタとを有する。前記内部電位生成回路部は、電源線に接続され、入力電位よりも高い第1の電位を生成する。前記第1のトランジスタは、前記内部電位生成回路の入力と出力との間に接続され、前記第1の電位が前記入力電位よりも低下したときオンして前記第1の電位を前記入力電位以上に保持するようにしきい値電圧が設定されたことを特徴とする。前記制御回路部は、前記第1の電位を供給され、ハイレベルまたはローレベルの制御信号を出力する。前記スイッチ部は、前記制御信号を入力して端子間の接続を切り替える。 (もっと読む)


【課題】信頼性が高い省電力モードを実現可能な高周波モジュールを提供する。
【解決手段】例えば、送信ノードTXをアンテナANTに接続するスイッチ用トランジスタTSW2と、TXを接地電源電圧GNDに短絡するスイッチ用トランジスタTSW1と、TSW1,TSW2のオン・オフを正の電源電圧VSWと負の電源電圧(−VSS)で制御するレベルシフト回路LSを備える。LSは、TSW2をオン、TSW1をオフに制御する送信動作モードTXMDの状態でスリープ命令を受けた際に、一旦、TSW2をオフ、TSW1をオンに制御するアイソレーション動作モードISOMDに移行し、一定の期間(Twait)が経過したのち、VSW,−VSSが非活性状態となるスリープモードSLPMDに遷移する。 (もっと読む)


【課題】スイッチングノイズの少ない電圧出力回路を提供する。
【解決手段】電圧出力回路10では、出力トランジスタ11は、入力電圧Vinが印加される第1端子16と負荷RLが接続される第2端子17の間に接続され、ゲート電極が第1ノードN1に接続される。第1プルアップ回路12は、制御信号VcがLowのときに、第1ノード電圧Vn1を引き上げる。プルダウン回路13は、制御信号VcがHighのときに導通して第1ノード電圧Vn1を引き下げる。ゲート電圧監視回路14は、第1端子16と第1ノードN1の間に接続され、差電圧ΔV=Vin−Vn1が基準電圧Vrefより大きいときに導通して第2ノード電圧Vn2をHighにする。第2プルアップ回路15は、第1端子16と第1ノードN1の間に接続され、制御信号VcがLowで且つ第2ノード電圧Vn2がHighのときに導通して第1ノード電圧Vn1を引き上げる。 (もっと読む)


201 - 220 / 1,507