説明

スクリーン版及び電極形成方法

【課題】耐刷性に優れると共に、膜厚が小さく、平坦性が高い個別電極を形成することが可能なスクリーン版及び膜厚が小さい個別電極を形成することが可能な電極形成方法を提供する。
【解決手段】複数の個別電極を形成するために用いられるスクリーン版10は、100μm以上200μm以下の周期でマトリックス状に配置されている吐出領域11と、非吐出領域12を有し、非吐出領域12は、個別電極の形状に相当する領域を除く領域12aと、個別電極の形状に相当する領域13内に配置されていると共に、個別電極の形状に相当する領域13を除く領域に接続されている遮蔽領域12bからなり、個別電極の形状に相当する領域13の面積に対する遮蔽領域12bの面積の比が0.10以上0.25以下である。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、スクリーン版及び電極形成方法に関する。
【背景技術】
【0002】
アクティブマトリックス駆動回路を用いたフラットパネルディスプレイは、ITO等の透明共通電極と、平面上に所定の周期でマトリックス状に配置された個別電極の間に液晶素子、EL素子、電気泳動素子等の表示素子が挟み込まれた構造を有する。また、フラットパネルディスプレイでは、各個別電極に繋がれているa−Si、poly−Si、有機半導体等のTFTやダイオードが、任意の個別電極を選択すると、画像が表示される。
【0003】
フラットパネルディスプレイは、高精細化・高速応答と共に、価格が重要であり、アクティブマトリックス駆動回路を低コストで作製する製造技術が必要とされている。従来、アクティブマトリックス駆動回路は、フォトリソグラフィー、ドライエッチング等のLSI製造技術を用いて作製されていたが、駆動回路の配線幅やビアホールのデザインルール(設計規則)は、10〜100μm程度であり、LSI製造技術は、オーバースペックであった。特に、所定の周期で配置された個別電極は、1素子の大きさが200ppiで90〜110μm程度、100ppiで180〜230μm程度であるため、低コストで製造する方法として、印刷技術、特に、スクリーン印刷法が注目されている。
【0004】
一方、プリント配線板やセラミック基板では、既にスクリーン印刷法による配線形成が実用化されており、導電性ペーストを用いたオフコンタクト方式によると、量産レベルで、最小線幅が約50μm、研究段階で、30〜10μmの金属配線が得られている。このため、これらの技術をアクティブマトリックス駆動回路の個別電極に応用することが期待されている。
【0005】
しかしながら、導電性ペーストをスクリーン印刷して、平面状に所定の周期で配置された個別電極Aを形成すると、中心部が厚く、端部が薄い凸形状になる(図9参照)。透明共通電極と個別電極Aの電位差で表示を行う液晶素子や電気泳動素子の場合、個別電極Aが凸形状になると、個別電極Aの近傍では、等電位面が個別電極Aの形状にならうため、電気力線が斜め方向を向く。その結果、隣接する個別電極A間でクロストークが発生し、コントラストが低下するという問題がある。電流駆動のEL素子の場合も、電流は、電気力線に沿って流れるため、上記と同様の問題がある。
【0006】
また、個別電極Aが凸形状となると、表示素子を積層する工程で以下の問題が発生する。液晶素子を積層する場合、個別電極A上に配向膜を塗布する必要があるが、個別電極Aが凸形状であると、スピンナー法を用いて、配向膜を均一に塗布することが困難になる。また、電気泳動素子を個別電極A上に接着させる場合、ロールコート法やブレード法が用いられるが、個別電極Aの中心部と端部で、接着層の厚さが異なるため、接着層の抵抗成分による電圧の降下が異なり、表示性能の低下、特に、面積階調を行う場合は、階調数が低下する。
【0007】
そこで、特許文献1には、スクリーン版上にパターン化された印刷領域内で、ペーストの基板への転写量を局所的に減じたい箇所に、ペーストが転写されない周囲の印刷領域に比べて小面積でペーストの流動性により最終的に消失する微小な非印刷領域を設けることが開示されている。しかしながら、このようなスクリーン版は、微小な非印刷領域が設けられているため、耐刷性が劣るという問題がある。
【特許文献1】特開2000−190453号公報
【発明の開示】
【発明が解決しようとする課題】
【0008】
本発明は、上記の従来技術が有する問題に鑑み、耐刷性に優れると共に、膜厚が小さく、平坦性が高い個別電極を形成することが可能なスクリーン版及び膜厚が小さい個別電極を形成することが可能な電極形成方法を提供することを目的とする。
【課題を解決するための手段】
【0009】
請求項1に記載の発明は、複数の個別電極を形成するために用いられるスクリーン版であって、100μm以上200μm以下の周期でマトリックス状に配置されている吐出領域と、非吐出領域を有し、該非吐出領域は、該個別電極の形状に相当する領域を除く領域と、該個別電極の形状に相当する領域内に配置されていると共に、該個別電極の形状に相当する領域を除く領域に接続されている遮蔽領域からなり、該個別電極の形状に相当する領域の面積に対する該遮蔽領域の面積の比が0.10以上0.25以下であることを特徴とする。
【0010】
請求項2に記載の発明は、請求項1に記載のスクリーン版において、隣接する前記吐出領域間の距離が5μm以上50μm以下であることを特徴とする。
【0011】
請求項3に記載の発明は、請求項1又は2に記載のスクリーン版において、前記遮蔽領域は、前記個別電極の形状に相当する領域の中心を含むことを特徴とする。
【0012】
請求項4に記載の発明は、請求項1乃至3のいずれか一項に記載のスクリーン版において、前記遮蔽領域は、十字形状であることを特徴とする。
【0013】
請求項5に記載の発明は、請求項4に記載のスクリーン版において、前記遮蔽領域は、前記個別電極の形状に相当する領域を除く領域に四箇所で接続されていることを特徴とする。
【0014】
請求項6に記載の発明は、請求項4又は5に記載のスクリーン版において、前記遮蔽領域の十字形状の交差部が前記個別電極の形状に相当する領域の中心を含むことを特徴とする。
【0015】
請求項7に記載の発明は、請求項1乃至6のいずれか一項に記載のスクリーン版において、400本/インチ以上590本/インチ以下のメッシュを有することを特徴とする。
【0016】
請求項8に記載の発明は、複数の個別電極を形成する電極形成方法であって、請求項1乃至7のいずれか一項に記載のスクリーン版を用いて導電性ペーストを印刷する工程を有することを特徴とする。
【0017】
請求項9に記載の発明は、複数の個別電極を形成する電極形成方法であって、所定の周期でマトリックス状に配置されている吐出領域と、非吐出領域を有するスクリーン版を用いて導電性ペーストを印刷する工程を有し、該非吐出領域は、該個別電極の形状に相当する領域を除く領域と、該個別電極の形状に相当する領域内に配置されていると共に、該個別電極の形状に相当する領域を除く領域に接続されている遮蔽領域からなり、該遮蔽領域は、印刷解像限界未満であることを特徴とする。
【0018】
請求項10に記載の発明は、請求項8又は9に記載の電極形成方法において、前記導電性ペーストは、粘度が100Pa・s以上300Pa・s以下であることを特徴とする。
【発明の効果】
【0019】
本発明によれば、耐刷性に優れると共に、膜厚が小さく、平坦性が高い個別電極を形成することが可能なスクリーン版及び膜厚が小さい個別電極を形成することが可能な電極形成方法を提供することができる。
【発明を実施するための最良の形態】
【0020】
次に、本発明を実施するための最良の形態を図面と共に説明する。
【0021】
図1に、本発明のスクリーン版の第一の例を示す。なお、図1(a)及び(b)は、それぞれ全体図及び部分拡大図を示す。スクリーン版10は、100〜200μmの周期でマトリックス状に配置されている吐出領域11と、非吐出領域12を有し、複数の個別電極を形成するために用いられる。このとき、非吐出領域12は、個別電極の形状に相当する領域13を除く領域12aと、個別電極の形状に相当する領域13内に配置されていると共に、個別電極の形状に相当する領域13を除く領域12aに両端が接続されている線状の遮蔽領域12bからなり、個別電極の形状に相当する領域13の面積に対する遮蔽領域12bの面積の比が0.10〜0.25、好ましくは0.15〜0.25である。なお、個別電極の形状に相当する領域13は、吐出領域11と、遮蔽領域12bからなる。このため、スクリーン版10を用いて、粘度が100〜300Pa・sである導電性ペーストを印刷すると、遮蔽領域12bは印刷解像限界未満になり、膜厚が小さく、平坦性が高い個別電極を形成することができる。具体的には、スクリーン版10が基板から離れる際にせん断力が印加されて低粘度化した導電性ペーストが、基板上の遮蔽領域12bに相当する領域に流れ込む。また、遮蔽領域12bが個別電極の形状に相当する領域13を除く領域12aに接続されているため、スクリーン版10は、印刷中に遮蔽領域12bが脱落しにくく、耐刷性に優れる。
【0022】
なお、個別電極の形状に相当する領域13の面積に対する遮蔽領域12bの面積の比が0.10未満であると、膜厚が小さく、平坦性が高い個別電極を形成することが困難になり、0.25を超えると、粘度が100〜300Pa・sである導電性ペーストを印刷しても、遮蔽領域12bが印刷解像限界以上となる。その結果、個別電極をフラットパネルディスプレイのアクティブマトリックスの駆動回路に用いる場合、表示素子に電圧が印加されない領域あるいは電流が注入されない領域が存在することになり、白反射率やコントラスト等の表示性能が低下する。
【0023】
また、隣接する吐出領域11間の距離が5〜50μmである。隣接する吐出領域11間の距離が5μm未満であると、スクリーン版10を作製する際に、隣接する吐出領域11が繋がり、スクリーン版10を歩留良く作製することが困難となることがある。また、隣接する吐出領域11間の距離が50μmを超えると、吐出領域11の面積が小さくなるため、遮蔽領域12bの面積も小さくなり、膜厚が小さく、平坦性が高い個別電極を形成できないことがある。
【0024】
さらに、遮蔽領域12bは、個別電極の形状に相当する領域13の中心を含み、吐出領域11の構成単位は、面積が略同一の二つの領域から構成される。このため、個別電極の中央部の膜厚の増大を抑制することができ、その結果、個別電極の膜厚を小さくすると共に、平坦性を向上させることができる。
【0025】
また、遮蔽領域12bが個別電極の形状に相当する領域13を除く領域12aに二箇所で接続されているため、スクリーン版10は、耐刷性に優れる。
【0026】
なお、遮蔽領域12bは、個別電極の形状に相当する領域13の中心を含まなくてもよい。また、遮蔽領域12bは、個別電極の形状に相当する領域13を除く領域12aに一箇所で接続されていてもよい。さらに、遮蔽領域12bは、曲線状であってもよい。
【0027】
また、スクリーン版10は、公知の方法で形成することができ、例えば、メッシュ数が400〜590本/インチであるメッシュ上に感光性乳剤を塗布した後に、フォトリソグラフィー技術を用いて、吐出領域11及び非吐出領域12を形成することができる。メッシュ数が400本/インチ未満であると、隣接する個別電極が短絡することがあり、590本/インチを超えると、メッシュの引張強度が不十分になることがある。このとき、メッシュは、線径が13〜23μm、オープニングが30〜46μmであることが好ましい。
【0028】
図2に、本発明のスクリーン版の第二の例を示す。なお、図2(a)及び(b)は、それぞれ全体図及び部分拡大図を示す。スクリーン版20は、100〜200μmの周期でマトリックス状に配置されている吐出領域21と、非吐出領域22を有し、複数の個別電極を形成するために用いられる。このとき、非吐出領域22は、個別電極の形状に相当する領域23を除く領域22aと、個別電極の形状に相当する領域23内に配置されていると共に、個別電極の形状に相当する領域23を除く領域22aに四端が接続されている十字形状の遮蔽領域22bからなり、個別電極の形状に相当する領域23の面積に対する遮蔽領域22bの面積の比が0.10〜0.25、好ましくは0.15〜0.25である。なお、個別電極の形状に相当する領域23は、吐出領域21と、遮蔽領域22bからなる。このため、スクリーン版20を用いて、粘度が100〜300Pa・sである導電性ペーストを印刷すると、遮蔽領域22bを印刷解像限界未満になり、膜厚が小さく、平坦性が高い個別電極を形成することができる。具体的には、スクリーン版20が基板から離れる際にせん断力が印加されて低粘度化した導電性ペーストが、基板上の遮蔽領域22bに相当する領域に流れ込む。また、遮蔽領域22bが個別電極の形状に相当する領域23を除く領域22aに接続されているため、スクリーン版20は、印刷中に遮蔽領域22bが脱落しにくく、耐刷性に優れる。
【0029】
なお、個別電極の形状に相当する領域23の面積に対する遮蔽領域22bの面積の比が0.10未満であると、膜厚が小さく、平坦性が高い個別電極を形成することが困難になり、0.25を超えると、粘度が100〜300Pa・sである導電性ペーストを印刷しても、遮蔽領域22bが印刷解像限界以上となる。その結果、個別電極をフラットパネルディスプレイのアクティブマトリックスの駆動回路に用いる場合、表示素子に電圧が印加されない領域あるいは電流が注入されない領域が存在することになり、白反射率やコントラスト等の表示性能が低下する。
【0030】
また、隣接する吐出領域21間の距離が5〜50μmである。隣接する吐出領域11間の距離が5μm未満であると、スクリーン版10を作製する際に、隣接する吐出領域11が繋がり、スクリーン版10を歩留良く作製することが困難となることがある。また、隣接する吐出領域11間の距離が50μmを超えると、吐出領域11の面積が小さくなるため、遮蔽領域12bの面積も小さくなり、膜厚が小さく、平坦性が高い個別電極を形成できないことがある。
【0031】
さらに、遮蔽領域22bは、十字形状であるため、個別電極の平坦性を向上させることができる。また、遮蔽領域22bは、十字形状の交差部が個別電極の形状に相当する領域23の中心を含み、吐出領域21の構成単位は、面積が略同一の四つの領域から構成される。このため、個別電極の中央部の膜厚の増大を抑制することができる。
【0032】
さらに、遮蔽領域22bが個別電極の形状に相当する領域23を除く領域22aに四箇所で接続されているため、スクリーン版20は、耐刷性に優れる。
【0033】
なお、遮蔽領域22bは、遮蔽領域22bは、十字形状の交差部が個別電極の形状に相当する領域23の中心を含まなくてもよい。また、個別電極の形状に相当する領域23を除く領域22aに一から三箇所で接続されていてもよい。さらに、遮蔽領域22bは、曲線の十字形状であってもよい。
【0034】
また、スクリーン版20は、公知の方法で形成することができ、例えば、メッシュ数が400〜590本/インチであるメッシュ上に感光性乳剤を塗布した後に、フォトリソグラフィー技術を用いて、吐出領域21及び非吐出領域22を形成することができる。メッシュ数が400本/インチ未満であると、隣接する個別電極が短絡することがあり、590本/インチを超えると、メッシュの引張強度が不十分になることがある。このとき、メッシュは、線径が13〜23μm、オープニングが30〜46μmであることが好ましい。
【0035】
本発明において、遮蔽領域の形状としては、遮蔽領域12b及び22bの形状に限定されず、遮蔽領域12b及び22bにおいて、個別電極の形状に相当する領域13及び23の中心の近傍領域の幅が大きい形状が挙げられる(図3(a)及び(b)参照)。これにより、個別電極の中央部の膜厚の増大を抑制することができる。このとき、中心の近傍領域の形状は、図3(a)及び(b)の四角形に限定されず、多角形、円、楕円等であってもよい。
【0036】
また、遮蔽領域の形状としては、遮蔽領域12b及び22bにおいて、個別電極の形状に相当する領域13及び23の中心に近い程、幅が大きい形状が挙げられる(図4(a)及び(b)参照)。これにより、個別電極の中央部の膜厚の増大を抑制することができる。このとき、中心に近い程、幅が大きい形状は、曲線状であってもよい。
【0037】
さらに、遮蔽領域の形状としては、遮蔽領域12b及び22bにおいて、個別電極の形状に相当する領域13及び23の対角線状である形状(図5(a)及び(b)参照)、遮蔽領域12bにおいて、複数の線分が接続されている形状(図6(a)参照)、接続されていない複数の線分からなる形状(図6(b)参照)が挙げられる。
【0038】
図7に、本発明の電極形成方法の一例を示す。基板31上にスクリーン版10(20)を配置した状態で、スクリーン版10(20)上に、粘度が100〜300Pa・sである導電性ペースト32を付与した後、スキージ33を導電性ペースト32が付与されたスクリーン版10(20)上で印刷方向に摺動させる。これにより、スクリーン版10(20)の吐出領域11(21)から、導電性ペースト32が基板31に転写される。なお、スキージ33の直下では、クリアランスが0となるが、印刷方向に対してスキージ33の後方では、スキージ33の移動に伴ってスクリーン版10が基板31から離れ、吐出領域11から導電性ペースト32が基板31に転写される。さらに、導電性ペースト32が転写された基板31をオーブンで乾燥(硬化)させることにより、100〜200μmの周期でマトリックス状に配置されている複数の個別電極が形成される。得られた個別電極は、フラットパネルディスプレイのアクティブマトリックスの駆動回路等に適用することができる。
【0039】
この場合、スクリーン版10(20)の遮蔽領域12b(22b)は、導電性ペースト32の粘度や印刷条件によって決まる印刷解像限界未満であればよい。これにより、膜厚が小さく、平坦性が高い個別電極を形成することができる。具体的には、スクリーン版10(20)が基板31から離れる際にせん断力が印加されて低粘度化した導電性ペースト32が、基板31上の遮蔽領域12b(22b)に相当する領域に流れ込む。
【0040】
基板31の材料としては、特に限定されないが、ガラス、石英、セラミック、PET(ポリエチレンテレフタレート)PES(ポリエーテルサルフォン)、PEN(ポリエチレンナフタレート)、PI(ポリイミド)、PC(ポリカーボネート)等のプラスチック、Si、GaAs等の半導体等が挙げられる。
【0041】
導電性ペースト32としては、ファインピッチ印刷に対応できれば、特に限定されないが、樹脂と有機溶媒からなる有機ビヒクル中に0.01〜数μmの大きさの導電性フィラーを分散させたインクを用いることができ、例えば、Ag−Pd等の合金ペースト、Auペースト、Agペースト、Niペースト、カーボンペースト等が挙げられる。このような導電性ペースト32は、せん断応力が印加されると低粘度化し、せん断応力が印加されなくなると粘度が回復する性質を有する。また、導電性ペースト32は、必要に応じて、分散剤、消泡剤等が添加されていてもよい。
【実施例】
【0042】
<実施例1>
スクリーン版10(図1参照)は、127μm周期でマトリックス状(640×480個)に配置されている吐出領域11と、非吐出領域12を有する。非吐出領域12は、個別電極の形状に相当する領域13を除く領域12aと、個別電極の形状に相当する領域13内に配置されていると共に、個別電極の形状に相当する領域13を除く領域12aに両端が接続されている幅20μmの線状の遮蔽領域12bからなる。このとき、個別電極の形状に相当する領域13は、90μm×90μmの矩形であり、個別電極の形状に相当する領域13の面積に対する遮蔽領域12bの面積の比が0.22である。なお、スクリーン版10は、100μm×100μmの矩形の個別電極を127μm周期(200ppi)でマトリックス状(640×480個)に形成するために用いられる。
【0043】
スクリーン版10は、以下のようにして作製した。まず、スクリーン版枠に、ポリエステルメッシュを介して、メッシュ数が500本/インチ、線径が18μmのステンレスメッシュをダブルバイアスコンビネーションの形で、所定の張力を印加して貼り付けた。次に、ステンレスメッシュの一面に乳剤を塗布し、乾燥する操作を繰り返した。さらに、乳剤の表面に、吐出領域11と、非吐出領域12のパターンを有するCrガラス原版を密着させ、露光装置を用いて、マスク露光を行った。次に、乳剤を現像した後、露光部の乳剤を熱硬化させた。
【0044】
<比較例1>
遮蔽領域12bを設けなかった以外は、実施例1と同様にして、スクリーン版を作製した。
【0045】
<比較例2>
遮蔽領域12bの代わりに、個別電極の形状に相当する領域13の中央に一辺の長さが20μmの正方形の遮蔽領域を設けた以外は、実施例1と同様にして、スクリーン版を作製した。
【0046】
<スクリーン版の評価1>
実施例1のスクリーン版10を用いて、個別電極を以下のように作製した。まず、PET(ポリエチレンテレフタレート)製の基板31上に、スクリーン版10を用いて、導電性ペースト32を印刷した(図7参照)。このとき、スクリーン版10と基板31とのクリアランスを2.2mmとし、ゴム硬度70のスキージを33用いて、アタック角70度、印刷速度100mm/秒で印刷した。また、導電性ペースト32は、0.1〜0.7μmの大きさのAgフィラー、アクリル樹脂、ブチルカルビトールアセタートからなり、粘度が240Pa・sである。なお、Agペーストの粘度は、ブルックフィールドHBT No.14スピンドルを用いて、10rpmで測定した。次に、強制対流式オーブンを用いて、導電性ペースト32が印刷された基板31を120℃で30分間加熱し、導電性ペースト32を硬化させた。
【0047】
さらに、比較例1、2のスクリーン版を用いて、同様に個別電極を作製した。
【0048】
個別電極の形状及び膜厚プロファイルを、それぞれ金属顕微鏡及び触針式段差計を用いて評価した。
【0049】
その結果、実施例1のスクリーン版を用いると、個別電極は、遮蔽領域に起因する抜けが見られず、矩形状であった。また、個別電極は、中心付近に小さな凹部を有する凸形状と単純な凸形状が混在しており、膜厚が5〜6μmであった。さらに、スクリーン版を洗浄した後、CCDを用いて観察した結果、遮蔽領域が脱落していないことが確認された。
【0050】
一方、比較例1のスクリーン版を用いると、個別電極は、単純な凸形状であり、膜厚が10〜12μmであった。
【0051】
また、比較例2のスクリーン版を用いると、個別電極は、遮蔽領域に起因する抜けが見られなかったが、膜厚が6〜12μmと大きくばらついていた。さらに、スクリーン版を洗浄した後、CCDを用いて観察した結果、遮蔽領域の一部が脱落していることが確認された。
【0052】
<スクリーン版の評価2>
実施例1、比較例2のスクリーン版を用いて導電性ペーストを1000回印刷し、個別電極を作製した以外は、スクリーン版の評価1と同様にして、スクリーン版を評価した。
【0053】
その結果、実施例1のスクリーン版を用いると、個別電極の形状、膜厚プロファイル、膜厚のバラツキに大きな変化はなかった。また、導電性ペーストを1000回印刷したスクリーン版を洗浄した後、CCDを用いて観察した結果、遮蔽領域が脱落していないことが確認された。
【0054】
一方、比較例2のスクリーン版を用いると、個別電極は、膜厚が6〜12μmであるが、個別電極の作製回数の増加に伴い、膜厚の最大頻度が厚膜側にシフトしており、遮蔽領域による膜厚低減の効果が小さくなっていた。また、導電性ペーストを1000回印刷したスクリーン版を洗浄した後、CCDを用いて観察した結果、遮蔽領域の脱落が、スクリーン版の評価1の場合よりも増加していた。
【0055】
スクリーン版の評価1及び2から、実施例1のスクリーン版を用いることにより、耐刷性を維持しながら、個別電極の膜厚を減少させると共に、平坦性を向上させることができることがわかる。さらに、個別電極の膜厚の減少に伴い、導電性ペーストの消費量が減少するため、低コストで個別電極を作製することができる。
【0056】
<実施例2>
遮蔽領域12bを設ける位置を、個別電極の形状に相当する領域13の中心Oに対して10μm平行移動させた以外は、実施例1と同様にして、スクリーン版を作製した(図8参照)。
【0057】
<実施例3>
遮蔽領域12bを設ける位置を、個別電極の形状に相当する領域13の中心Oに対して20μm平行移動させた以外は、実施例1と同様にして、スクリーン版を作製した(図8参照)。
【0058】
<スクリーン版の評価3>
実施例2、3のスクリーン版を用いた以外は、スクリーン版の評価1と同様にして、スクリーン版を評価した。
【0059】
その結果、実施例2、3のスクリーン版を用いると、個別電極は、遮蔽領域に起因する抜けが見られず、矩形状であった。また、個別電極は、遮蔽領域12bに相当する領域付近に小さな凹部を有する凸形状と単純な凸形状が混在しており、実施例2及び3のスクリーン版を用いた場合の個別電極の膜厚は、それぞれ5〜7μm及び6〜8μmであった。
【0060】
スクリーン版の評価1及び3から、実施例2、3のスクリーン版を用いることにより、実施例1のスクリーン版を用いる場合より劣るものの、個別電極の膜厚を減少させると共に、平坦性を向上させることができることがわかる。
【0061】
なお、印刷解像限界未満の遮蔽領域を、個別電極の形状に相当する領域の中心から平行移動させることにより、導電性ペーストの転写量を個別電極内で偏らせると、個別電極の形状を矩形状から変化させることもできる。
【0062】
<実施例4>
スクリーン版10(図1参照)は、127μm周期でマトリックス状(320×240個)に配置されている吐出領域11と、非吐出領域12を有する。非吐出領域12は、個別電極の形状に相当する領域13を除く領域12aと、個別電極の形状に相当する領域13内に配置されていると共に、個別電極の形状に相当する領域13を除く領域12aに両端が接続されている幅20μmの線状の遮蔽領域12bからなる。このとき、個別電極の形状に相当する領域13は、100μm×100μmの矩形であり、個別電極の形状に相当する領域13の面積に対する遮蔽領域12bの面積の比が0.20である。なお、スクリーン版10は、110μm×110μmの矩形の個別電極を127μm周期(200ppi)でマトリックス状(320×240個)に形成するために用いられる。
【0063】
スクリーン版10は、以下のようにして作製した。まず、スクリーン版枠に、ポリエステルメッシュを介して、メッシュ数が590本/インチ、線径が13μmのステンレスメッシュをダブルバイアスコンビネーションの形で、所定の張力を印加して貼り付けた。次に、ステンレスメッシュの一面に乳剤を塗布し、乾燥する操作を繰り返した。さらに、乳剤の表面に、吐出領域11と、非吐出領域12のパターンを有するCrガラス原版を密着させ、露光装置を用いて、マスク露光を行った。次に、乳剤を現像した後、露光部の乳剤を熱硬化させた。
【0064】
<実施例5>
遮蔽領域12bの幅を15μmとした以外は、実施例4と同様にして、スクリーン版を作製した。このとき、個別電極の形状に相当する領域13の面積に対する遮蔽領域12bの面積の比が0.15である。
【0065】
<実施例6>
遮蔽領域12bの幅を10μmとした以外は、実施例4と同様にして、スクリーン版を作製した。このとき、個別電極の形状に相当する領域13の面積に対する遮蔽領域12bの面積の比が0.10である。
【0066】
<実施例7>
遮蔽領域12bの幅を25μmとした以外は、実施例4と同様にして、スクリーン版を作製した。このとき、個別電極の形状に相当する領域13の面積に対する遮蔽領域12bの面積の比が0.25である。
【0067】
<比較例3>
遮蔽領域12bを設けなかった以外は、実施例4と同様にして、スクリーン版を作製した。
【0068】
<比較例4>
遮蔽領域12bの幅を30μmとした以外は、実施例4と同様にして、スクリーン版を作製した。このとき、個別電極の形状に相当する領域13の面積に対する遮蔽領域12bの面積の比が0.30である。
【0069】
<スクリーン版の評価4>
実施例4〜7、比較例3、4のスクリーン版を用いた以外は、スクリーン版の評価1と同様にして、スクリーン版を評価した。
【0070】
その結果、実施例4〜7のスクリーン版を用いると、個別電極は、遮蔽領域に起因する抜けが見られず、矩形状であった。また、個別電極は、中心付近に小さな凹部を有する凸形状と単純な凸形状が混在しており、比較例3のスクリーン版を用いた場合よりも膜厚が低減していた。
【0071】
一方、比較例3のスクリーン版を用いると、個別電極は、単純な凸形状であり、膜厚が10〜12μmであった。また、比較例4のスクリーン版を用いると、個別電極は、遮蔽領域に起因する抜けが見られた。
【0072】
<実施例8>
スクリーン版20(図2参照)は、169μm周期でマトリックス状(640×480個)に配置されている吐出領域21と、非吐出領域22を有する。非吐出領域22は、個別電極の形状に相当する領域23を除く領域22aと、個別電極の形状に相当する領域23内に配置されていると共に、個別電極の形状に相当する領域23を除く領域22aに両端が接続されている幅20μmの十字形状の遮蔽領域22bからなる。このとき、個別電極の形状に相当する領域23は、120μm×120μmの矩形であり、個別電極の形状に相当する領域23の面積に対する遮蔽領域12bの面積の比が0.17である。なお、スクリーン版20は、140μm×140μmの矩形の個別電極を169μm周期(150ppi)でマトリックス状(640×480個)に形成するために用いられる。
【0073】
スクリーン版20は、以下のようにして作製した。まず、スクリーン版枠に、ポリエステルメッシュを介して、メッシュ数が400本/インチ、線径が19μmのステンレスメッシュをダブルバイアスコンビネーションの形で、所定の張力を印加して貼り付けた。次に、ステンレスメッシュの一面に乳剤を塗布し、乾燥する操作を繰り返した。さらに、乳剤の表面に、吐出領域21と、非吐出領域22のパターンを有するCrガラス原版を密着させ、露光装置を用いて、マスク露光を行った。次に、乳剤を現像した後、露光部の乳剤を熱硬化させた。
【0074】
<スクリーン版の評価5>
実施例8のスクリーン版20を用いて、個別電極を以下のように作製した。まず、PET(ポリエチレンテレフタレート)製の基板31上に、スクリーン版20を用いて、導電性ペースト32を印刷した(図7参照)。このとき、スクリーン版20と基板31とのクリアランスを2.8mmとし、ゴム硬度70のスキージを33用いて、アタック角70度、印刷速度60mm/秒で印刷した。また、導電性ペースト32は、0.1〜0.7μmの大きさのAgフィラー、ポリエステル樹脂、ブチルカルビトールアセタートからなり、粘度が160Pa・sである。なお、Agペーストの粘度は、ブルックフィールドHBT No.14スピンドルを用いて、10rpmで測定した。次に、強制対流式オーブンを用いて、導電性ペースト32が印刷された基板31を130℃で20分間加熱し、導電性ペースト32を硬化させた。
【0075】
さらに、実施例1、比較例1のスクリーン版を用いて、同様に個別電極を作製した。
【0076】
個別電極の形状及び膜厚プロファイルを、それぞれ金属顕微鏡及び触針式段差計を用いて評価した。
【0077】
その結果、実施例8のスクリーン版を用いると、個別電極は、遮蔽領域に起因する抜けが見られず、矩形状であった。また、個別電極は、中心付近に小さな凹部を有する凸形状であり、膜厚が4〜5μmであった。さらに、スクリーン版を洗浄した後、CCDを用いて観察した結果、遮蔽領域が脱落していないことが確認された。
【0078】
一方、実施例1のスクリーン版を用いると、個別電極は、遮蔽領域に起因する抜けが見られず、矩形状であった。また、個別電極は、中心付近に小さな凹部を有する凸形状と単純な凸形状が混在しており、膜厚が7〜8μmであった。
【0079】
また、比較例1のスクリーン版を用いると、個別電極は、単純な凸形状であり、膜厚が14〜17μmであった。
【0080】
<スクリーン版の評価6>
実施例1、8のスクリーン版を用いて導電性ペースト32を5000回印刷し、個別電極を作製した以外は、スクリーン版の評価5と同様にして、スクリーン版を評価した。
【0081】
その結果、実施例8のスクリーン版を用いると、個別電極の形状、膜厚プロファイル、膜厚のバラツキに大きな変化はなかった。また、導電性ペースト32を5000回印刷したスクリーン版を洗浄した後、CCDを用いて観察した結果、遮蔽領域が脱落していないことが確認された。
【0082】
一方、実施例1のスクリーン版を用いると、個別電極は、個別電極の作製回数の増加に伴い、膜厚のバラツキが厚膜側に僅かに大きくなっていた。また、導電性ペースト32を5000回印刷したスクリーン版を洗浄した後、CCDを用いて観察した結果、遮蔽領域の一部が欠落しているものが僅かに見られた。
【0083】
スクリーン版の評価5及び6から、実施例8のスクリーン版は、実施例1のスクリーン版よりも、耐刷性を維持しながら、個別電極の膜厚を減少させると共に、平坦性を向上させる効果が大きいことがわかる。
【0084】
なお、印刷解像限界未満の遮蔽領域の十字形状の交差部を、個別電極の形状に相当する領域の中心から移動させることにより、導電性ペーストの転写量を個別電極内で偏らせると、個別電極の形状を矩形状から変化させることもできる。
【0085】
<スクリーン版の評価7>
粘度が50、100、200、240、300、350、400Pa・sである導電性ペースト32を用いた以外は、スクリーン版の評価5と同様にして、スクリーン版を評価した。
【0086】
その結果、粘度が100、200、240、300Pa・sである導電性ペースト32を用いると、個別電極は、遮蔽領域に起因する抜けが見られず、矩形状であった。また、個別電極は、中心付近に小さな凹部を有する凸形状であり、導電性ペースト32の粘度が100、200、240、300Pa・sである場合の膜厚は、比較例3のスクリーン版を用いた場合よりも低減していた。
【0087】
一方、粘度が50Pa・sである導電性ペースト32を用いると、隣接する個別電極の殆どが短絡していた。
【0088】
また、粘度が350、400Pa・sである導電性ペースト32を用いると、個別電極の一部でカスレが発生した。
【0089】
<実施例9>
メッシュ数が400本/インチ、線径が18μmのステンレスメッシュを用いた以外は、実施例1と同様にして、スクリーン版10を作製した。
【0090】
<実施例10>
メッシュ数が590本/インチ、線径が13μmのステンレスメッシュを用いた以外は、実施例1と同様にして、スクリーン版10を作製した。
【0091】
<実施例11>
メッシュ数が325本/インチ、線径が23μmのステンレスメッシュを用いた以外は、実施例1と同様にして、スクリーン版10を作製した。
【0092】
<実施例12>
メッシュ数が350本/インチ、線径が20μmのステンレスメッシュを用いた以外は、実施例1と同様にして、スクリーン版10を作製した。
【0093】
<実施例13>
メッシュ数が630本/インチ、線径が13μmのステンレスメッシュを用いた以外は、実施例1と同様にして、スクリーン版10を作製した。
【0094】
<実施例14>
メッシュ数が840本/インチ、線径が11μmのステンレスメッシュを用いた以外は、実施例1と同様にして、スクリーン版10を作製した。
【0095】
<スクリーン版の評価7>
実施例1、9〜14のスクリーン版10を用いて、個別電極を以下のように作製した。まず、PET(ポリエチレンテレフタレート)製の基板31上に、スクリーン版10を用いて、導電性ペースト32を印刷した(図7参照)。このとき、スクリーン版10と基板31とのクリアランスを2.8mmとし、ゴム硬度70のスキージを33用いて、アタック角70度、印刷速度60mm/秒で印刷した。また、導電性ペースト32は、0.1〜0.7μmの大きさのAgフィラー、ポリエステル樹脂、ブチルカルビトールアセタートからなり、粘度が200Pa・sである。なお、Agペーストの粘度は、ブルックフィールドHBT No.14スピンドルを用いて、10rpmで測定した。次に、強制対流式オーブンを用いて、導電性ペースト32が印刷された基板31を130℃で20分間加熱し、導電性ペースト32を硬化させた。
【0096】
個別電極の形状及び膜厚プロファイルを、それぞれ金属顕微鏡及び触針式段差計を用いて評価した。
【0097】
その結果、実施例1、9、10、13、14のスクリーン版を用いると、個別電極は、遮蔽領域に起因する抜けが見られず、矩形状であった。また、個別電極は、中心付近に小さな凹部を有する凸形状であり、実施例1、9、10、13、14のスクリーン版を用いた場合の膜厚は、比較例3のスクリーン版を用いた場合よりも低減していた。
【0098】
実施例11、12のスクリーン版を用いると、隣接する個別電極の一部が短絡していた。
【0099】
なお、実施例13、14のスクリーン版は、ステンレスメッシュの引っ張り強度が小さいため、実用には適さない。
【0100】
<実施例15>
スクリーン版10(図1参照)は、50、100、150、200及び300μm周期でマトリックス状(320×240個)に配置されている吐出領域11と、非吐出領域12を有する。非吐出領域12は、個別電極の形状に相当する領域13を除く領域12aと、個別電極の形状に相当する領域13内に配置されていると共に、個別電極の形状に相当する領域13を除く領域12aに両端が接続されている幅10〜20μmの線状の遮蔽領域12bからなる。このとき、個別電極の形状に相当する領域13は、一辺の長さが個別電極よりも5〜30μm短い矩形である。なお、スクリーン版10は、約45μm×45μm〜250μm×250μmの矩形の個別電極を50、100、150、200及び300μm周期でマトリックス状(320×240個)に形成するために用いられる。
【0101】
スクリーン版10は、以下のようにして作製した。まず、スクリーン版枠に、ポリエステルメッシュを介して、メッシュ数が500本/インチ、線径が18μmのステンレスメッシュをダブルバイアスコンビネーションの形で、所定の張力を印加して貼り付けた。次に、ステンレスメッシュの一面に乳剤を塗布し、乾燥する操作を繰り返した。さらに、乳剤の表面に、吐出領域11と、非吐出領域12のパターンを有するCrガラス原版を密着させ、露光装置を用いて、マスク露光を行った。次に、乳剤を現像した後、露光部の乳剤を熱硬化させた。
【0102】
<スクリーン版の評価8>
実施例15のスクリーン版を用い、粘度が160、200及び240Pa・sである導電性ペースト32を適宜使い分けて用いた以外は、スクリーン版の評価1と同様にして、スクリーン版を評価した。
【0103】
その結果、周期が100、150、200及び300μmであるスクリーン版を用いると、個別電極は、遮蔽領域に起因する抜けが見られず、矩形状であった。このとき、周期100、150、200及び300μmである場合の隣接する個別電極間の距離は、5〜50μmであった。また、周期が100、150及び200μmである場合は、個別電極の膜厚の低減の効果は大きかったが、周期が300μmである場合は、個別電極の膜厚の低減の効果は小さかった。これは、個別電極の形状に相当する領域の面積に対する遮蔽領域の面積の比が小さいためであると考えられる。
【0104】
一方、周期が50μmであるスクリーン版を用いると、個別電極の形状に相当する領域の面積に対する遮蔽領域の面積の比が0.43であるため、個別電極は、遮蔽領域に起因する抜けが発生した。
【図面の簡単な説明】
【0105】
【図1】本発明のスクリーン版の第一の例を示す上面図である。
【図2】本発明のスクリーン版の第二の例を示す上面図である。
【図3】本発明のスクリーン版の第三及び第四の例を示す上面図である。
【図4】本発明のスクリーン版の第五及び第六の例を示す上面図である。
【図5】本発明のスクリーン版の第七及び第八の例を示す上面図である。
【図6】本発明のスクリーン版の他の例を示す上面図である。
【図7】本発明の電極形成方法の一例を示す断面図である。
【図8】実施例2、3のスクリーン版を示す上面図である。
【図9】従来の個別電極の形状を示す断面図である。
【符号の説明】
【0106】
10、20 スクリーン版
11、21 吐出領域
12、22 非吐出領域
12a、22a 個別電極の形状に相当する領域を除く領域
12b、22b 遮蔽領域
13、23 個別電極の形状に相当する領域
31 基板
32 導電性ペースト
33 スキージ

【特許請求の範囲】
【請求項1】
複数の個別電極を形成するために用いられるスクリーン版であって、
100μm以上200μm以下の周期でマトリックス状に配置されている吐出領域と、非吐出領域を有し、
該非吐出領域は、該個別電極の形状に相当する領域を除く領域と、該個別電極の形状に相当する領域内に配置されていると共に、該個別電極の形状に相当する領域を除く領域に接続されている遮蔽領域からなり、
該個別電極の形状に相当する領域の面積に対する該遮蔽領域の面積の比が0.10以上0.25以下であることを特徴とするスクリーン版。
【請求項2】
隣接する前記吐出領域間の距離が5μm以上50μm以下であることを特徴とする請求項1に記載のスクリーン版。
【請求項3】
前記遮蔽領域は、前記個別電極の形状に相当する領域の中心を含むことを特徴とする請求項1又は2に記載のスクリーン版。
【請求項4】
前記遮蔽領域は、十字形状であることを特徴とする請求項1乃至3のいずれか一項に記載のスクリーン版。
【請求項5】
前記遮蔽領域は、前記個別電極の形状に相当する領域を除く領域に四箇所で接続されていることを特徴とする請求項4に記載のスクリーン版。
【請求項6】
前記遮蔽領域の十字形状の交差部が前記個別電極の形状に相当する領域の中心を含むことを特徴とする請求項4又は5に記載のスクリーン版。
【請求項7】
400本/インチ以上590本/インチ以下のメッシュを有することを特徴とする請求項1乃至6のいずれか一項に記載のスクリーン版。
【請求項8】
複数の個別電極を形成する電極形成方法であって、
請求項1乃至7のいずれか一項に記載のスクリーン版を用いて導電性ペーストを印刷する工程を有することを特徴とする電極形成方法。
【請求項9】
複数の個別電極を形成する電極形成方法であって、
所定の周期でマトリックス状に配置されている吐出領域と、非吐出領域を有するスクリーン版を用いて導電性ペーストを印刷する工程を有し、
該非吐出領域は、該個別電極の形状に相当する領域を除く領域と、該個別電極の形状に相当する領域内に配置されていると共に、該個別電極の形状に相当する領域を除く領域に接続されている遮蔽領域からなり、
該遮蔽領域は、印刷解像限界未満であることを特徴とする電極形成方法。
【請求項10】
前記導電性ペーストは、粘度が100Pa・s以上300Pa・s以下であることを特徴とする請求項8又は9に記載の電極形成方法。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate

【図7】
image rotate

【図8】
image rotate

【図9】
image rotate


【公開番号】特開2009−285947(P2009−285947A)
【公開日】平成21年12月10日(2009.12.10)
【国際特許分類】
【出願番号】特願2008−139763(P2008−139763)
【出願日】平成20年5月28日(2008.5.28)
【出願人】(000006747)株式会社リコー (37,907)
【Fターム(参考)】