説明

光源装置

【課題】安定した出力を得ることができる波長変換型の紫外光源装置を提供すること。
【解決手段】本発明の一態様に係る光源装置は、基本波L1を発生するレーザー光源1と、基本波L1又はその高調波を入射光として、波長変換光L2を発生する少なくとも1つの非線形光学結晶3と、入射光の光路上に配置され、当該入射光の偏光成分に対する屈折率を変化させて、波長変換光L2の出力を変化させる偏光調整手段2とを備える。偏光調整手段2は、光検出器7から電気信号出力に応じて屈折率の変化量を変化させる

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、光源装置に関し、特に非線形光学結晶を用いて紫外域の光を発生させる波長変換型の光源装置に関する。
【背景技術】
【0002】
微細化が進む半導体露光用フォトマスク原板の製造過程では、原板内の微小な欠陥を測定することが必要である。また、微細な露光パターンが描かれたレチクルに対しては、実際のパターンが正しく描かれているか、パターン上に欠陥が無いかを測定する必要がある。
【0003】
このような目的には、連続ないし高繰返しパルス出力の光を被測定物に照射して、その散乱等による強度変化を捉えて比較する半導体欠陥検査装置が用いられている。半導体欠陥検査装置の方式は多岐にわたるが、一般的に光源の波長を短波長化するほど分解能が向上する。このため、近年、非線形光学結晶を用いた波長変換による深紫外域の光源が主に利用されている。
【0004】
しかし、半導体検査用として可干渉性の高い光を用いると、スペックルと呼ばれる空間強度分布の不均一性が発生してしまう。このため、例えば特許文献1に指摘されているように、可干渉性があまり高くない紫外光を用いること、そのために複数の縦モードで発振する縦マルチモードのレーザー光を基本光源として用いることが望ましい。
【0005】
このような条件を満たす光源として、波長515nmないし488nmで連続発振するアルゴンイオンレーザーを用い、内部共振型波長変換により第2高調波(257、244nm)を発生するものがある。
【0006】
また、アルゴンイオンレーザーの第2高調波である244nm光とNd:YAGレーザー等からの1064nm光との和周波混合により得られる連続出力198.5nm光源が開発されている。しかし、アルゴンイオンレーザーは、非常に発振効率が低く大電力を必要とする上、ガスレーザー管の頻繁な交換が必要な点で、メンテナンス性に大きな課題がある。
【0007】
そのため、近年では、Nd:YAGやNd:YVO4レーザー(1064nm)の第4高調波(266nm)、第5高調波(213nm)を発生するものや、1540nm光を発生するエルビウム添加ファイバーレーザー光の第8高調波発生による193.4nm光源等、より小型でメンテナンス性の良い全固体構成の深紫外光源の研究、開発が盛んに進められている。
【0008】
縦マルチモードのNd:YAGレーザーやファイバーレーザー等の赤外光から深紫外光を発生するには、最低2段階の波長変換が必要となる。このため、紫外光発生用の非線形光学結晶をレーザー共振器の内部や外部共振器内に設置することは原理的に困難である。実用的な出力の光源とするためにはピーク強度の高い赤外レーザー、例えばモードロック動作による高繰返しパルス発振の高出力レーザー光源が適している。
【0009】
266nm以下の深紫外光源は、発生方式に関わらず、一般に非線形光学結晶の光学損傷や劣化が原因となって入射光に対する発生光への変換効率が経時的に低下する。このため、その低下分を補うように入射光パワーを上げて出力を安定化することが必要である。通常は、発生光の一部を分岐して、その出力を測定し、出力の増減に応じて励起レーザー光の出力を増減するAPC(Automatic Power Control)回路による安定化制御が行われる。
【0010】
半導体検査用の光源においては、長期的な安定性だけでなく周波数帯域でkHzオーダーの短時間での出力安定性、すなわち高周波光ノイズの抑制も求められる。波長変換光における光ノイズは、内部共振器型のレーザー光源の共振器内に波長変換結晶を配した緑色や青色の小出力光源において大きな課題となっている。
【0011】
その抑制方法としては、例えば特許文献2、3等において、分岐した出力を測定して励起用半導体レーザーの電流にフィードバックすることが提案されている。電気的制御なので高周波光ノイズの補償も可能である。また、内部共振器型特有の光ノイズ発生の要因である共振器内のモード競合を補償する波長板設置、位相補償等の各種手段が知られている。
【0012】
被測定物に照射されるレーザー光の強度変化の微妙な差を捉えて欠陥を検出する半導体検査装置の紫外光源としては、短期及び長期での光出力の揺らぎが小さいこととが重要である。同様の理由により、照射面での空間強度分布の均一性も重要である。
【0013】
非線形光学結晶による波長変換型の光源の変換効率は、入射光強度の2乗(高調波発生の場合)、ないし2つの入射光強度の積(和周波発生の場合)に依存する。そのため、例えば、基本波に1%の出力変動が存在すると、2段階の波長変換過程となる第4高調波発生では4%の出力変動となってしまう。
【0014】
従来の共振器内波長変換による小型可視光源のように、励起用半導体レーザーの駆動電流を制御することにより出力の安定化を図ろうとすると、レーザー媒質への光吸収量が変化して熱レンズ効果と呼ばれるレーザー媒質の屈折率分布変化により出力光の広がり角やプロファイルが変化する。このため、紫外域への波長変換の効率がむしろ低下したり、発生する紫外光の広がり角やプロファイルが変化してしまう問題があるので適さない。
【0015】
また、近年主流となっている半導体可飽和ミラーを用いたモードロックレーザーを基本波とした光源では、励起光パワーを下げるとモードロック動作が保たれなくなるので励起用半導体レーザーの電流を調整して出力を制御することはやはり実用的ではない。
【0016】
スペックルを生じにくい縦マルチモードの光源を基本光源とした非線形波長変換により紫外光を発生させると、縦モード間の競合現象により和周波混合が起こり、発生する紫外光出力の揺らぎが大きくなるという問題が顕著になる。前述した内部共振器型波長変換における波長板設置、位相補償等の手段は、共振器の外部に1つ以上の非線形光学結晶が配される高次高調波発生による紫外光源においては有効ではない。
【0017】
スペックルを除去、抑制する手段としては、その空間コヒーレンスを劣化される光学手段を配することも有効である。このような光学手段として、例えば、特許文献4にはすりガラス等の回転拡散板や回折型レンズ素子が記載されている。しかしながら、このような変調素子を用いると、その素子を通過した後の光出力は若干であったとしても、その変調周期で変動し、光ノイズの発生源となりうる。その変動量が例えば2%程度でも、半導体検査用の光源装置においては大きな障害となる。
【0018】
特許文献5には、波長板と偏光子によるアッテネータをレーザー光源と非線形光学結晶の間に設置した装置が示されている。しかし、波長板の回転により抑制できる光の揺らぎは、精々1秒オーダーであり、kHzオーダーの光ノイズには追随できない。
【0019】
また、レーザー光における一般的な光ノイズ除去用として、ノイズイーターと呼ばれる装置がある。これは、電気光学結晶等と偏光子の組み合わせによりアッテネータを構成して、偏光子を透過する光の出力が安定化するようにフィードバック制御する装置である。
【0020】
このような装置では、基本的に変動する出力の最低値以下に透過パワーが固定されており、また偏光子の光損失もかなり大きいことから、レーザー光出力は最大85%程度に低下してしまう。さらに、波長変換においては、ノイズイーターを用いて励起光源の出力を安定化しても、縦モード競合による和周波発生等の波長変換の過程で発生する光ノイズや、波長変換光に対して作用する空間コヒーレンスを劣化させる手段により生じる光ノイズは除去できない。
【先行技術文献】
【特許文献】
【0021】
【特許文献1】特開2006−269455号公報
【特許文献2】特開平9−232665号公報
【特許文献3】特開平10−70333号公報
【特許文献4】特開2002−267825号公報
【特許文献5】特開2000−164950号公報
【発明の概要】
【発明が解決しようとする課題】
【0022】
本発明は、上記のような問題を背景としてなされたものであり、安定化した波長変換光出力を得ることができる光源装置を提供することを目的とする。
【課題を解決するための手段】
【0023】
本発明の第1の態様に係る光源装置は、基本波を発生するレーザー光源と、前記基本波又はその高調波を入射光として、波長変換光を発生する少なくとも1つの非線形光学結晶と、前記入射光の光路上に配置され、当該入射光の偏光成分に対する屈折率を変化させて、前記波長変換光の出力を変化させる偏光調整手段とを備えるものである。これにより、偏光調整手段により入射光の偏光を調整して非線形光学結晶に入射させることにより、波長変換光の出力の安定化を図ることが可能となる。
【0024】
本発明の第2の態様に係る光源装置は、上記の光源装置において、前記波長変換光の出力を電気信号出力に変換する光出力測定器を備え、前記偏光調整手段は、前記光出力測定器からの前記電気信号出力に応じて前記屈折率の変化量を変化させることを特徴とするものである。これにより、波長変換光の変化に応じて偏光調整手段における屈折率を変化させることができ、波長変換光の出力を安定に保つことが可能となる。
【0025】
本発明の第3の態様に係る光源装置は、上記の光源装置において、前記入射光の光路上に設けられ、前記偏光調整手段に印加される電気信号が略一定となるように、前記入射光のうち前記非線形光学結晶に入射して波長変換に寄与する偏光成分を調整する位相差板をさらに備えるものである。これにより、偏光調整手段に印加される電気信号を略一定に保つことができ、消費電力を抑制することが可能となる。
【0026】
本発明の第4の態様に係る光源装置は、上記の光源装置において、前記波長変換光の光路上に設けられ、前記波長変換光の空間コヒーレンスを劣化させる光学手段を備えるものである。このように、スペックルを低減させるための空間コヒーレンスを劣化する光学手段を配置したとしても、安定した出力の波長変換光を得ることが可能となる。
【0027】
本発明の第5の態様に係る光源装置は、上記の光源装置において、前記光学手段は、回転駆動される光学素子、液晶空間光変調素子又は形状可変鏡を含むことを特徴とするものである。本発明は、このような場合に特に有効である。
【0028】
本発明の第6の態様に係る光源装置は、上記の光源装置において、前記偏光調整手段は、光弾性効果又は電気光学効果によって屈折率変化を生じる光学素子であることを特徴とするものである。本発明は、このような偏光調整手段を用いることにより実現可能である。
【0029】
本発明の第7の態様に係る光源装置は、上記の光源装置において、前記基本波の波長は1030〜1080nm、前記波長変換光は第4高調波発生による270nm以下の紫外光であり、前記偏光調整手段は、前記基本波又は第2高調波に対して作用することを特徴とするものである。
【0030】
本発明の第8の態様に係る光源装置は、上記の光源装置において、前記基本波の波長は1030〜1080nm、前記波長変換光は前記基本波と第4高調波の和周波混合により発生する216nm以下の紫外光であり、前記偏光調整手段は、前記基本波、第2高調波又は第4高調波に対して作用することを特徴とするものである。
【0031】
本発明の第9の態様に係る光源装置は、上記の光源装置において、前記レーザー光源は、縦マルチモードの基本波を発生することを特徴とするものである。本発明は、このような場合に、特に有効である。
【発明の効果】
【0032】
本発明によれば、安定化した波長変換光出力を得ることができる光源装置を提供することができる。
【図面の簡単な説明】
【0033】
【図1】実施の形態1に係る光源装置の構成を示す図である。
【図2】実施の形態1に係る光源装置において用いられる偏光調整手段の構成を示す図である。
【図3】本発明に係る光源装置の効果を説明する図である。
【図4】実施の形態2に係る光源装置の構成を示す図である。
【図5】本発明に係る光源装置において用いられる偏光調整手段の他の例を示す図である。
【図6】非線形光学結晶の配置例と、偏光調整手段がどのレーザー光に作用するかについて説明するための図である。
【図7】非線形光学結晶の配置例と、偏光調整手段がどのレーザー光に作用するかについて説明するための図である。
【図8】非線形光学結晶の配置例と、偏光調整手段がどのレーザー光に作用するかについて説明するための図である。
【発明を実施するための形態】
【0034】
以下、本発明の実施の形態について図面を参照して説明する。以下の説明は、本発明の好適な実施の形態を示すものであって、本発明の範囲が以下の実施の形態に限定されるものではない。以下の説明において、同一の符号が付されたものは実質的に同様の内容を示している。
【0035】
実施の形態1.
本発明の実施の形態1に係る光源装置の構成を、図1、2を参照して説明する。図1は、本実施の形態に係る光源装置の構成を示す図である。図2は、本実施の形態に係る光源装置において用いられる偏光調整手段の構成を示す図である。図1に示すように、光源装置は、レーザー光源1、偏光調整手段2、非線形光学結晶3、ダイクロイックミラー4a、4b、空間コヒーレンス劣化手段5、部分反射ミラー6、光検出器7、制御器8、参照用電圧発生器9を備えている。
【0036】
本発明では、非線形光学結晶を用いて紫外域の光を発生させる波長変換型の光源装置において、半導体検査装置の照明等に適した低ノイズで高安定出力の光源を実現することを目的としている。
【0037】
レーザー光源1からのレーザー光L1は、偏光調整手段2を透過して波長変換用の非線形光学結晶3に入射する。非線形光学結晶3は、入射光を紫外域の波長変換光L2に変換して出射する。波長変換光L2の一部は光分岐手段である部分反射ミラー6により分岐されて、光検出器7に入射する。光検出器7からの出力電気信号は、偏光調整手段2の信号源となる。以下、各構成要素について詳細に説明する。
【0038】
レーザー光源1は、基本波であるレーザー光L1を発生する。レーザー光L1の波長は、1030〜1080nmの赤外域の波長である。また、レーザー光源1のレーザー発振方式は、半導体検査に必要な繰返し数200kHz以上のパルス発振方式である。レーザー光源1から出射されるレーザー光L1は、直線偏光の光である。図2に示すように、本実施の形態においては、レーザー光L1は紙面に対して垂直に偏光した光であるものとする。
【0039】
偏光調整手段2は、入射するレーザー光L1の偏光成分に対する屈折率を変化させるものである。本実施の形態おいて用いられる偏光調整手段2は、電気光学効果を用いて屈折率変化を生じる光学素子である。偏光調整手段2は、後述する制御器8からの電気信号に応じて偏光調整手段2に印加される電場が変化することにより、その屈折率が変化する。偏光調整手段2は、非線形光学結晶3への入射光の光路上に設けられている。
【0040】
図2に示すように、偏光調整手段2は、遅軸(slow axis)と速軸(fast axis)を有している。すなわち、偏光調整手段2は複屈折性を有する。つまり、偏光調整手段2においては、光の振動方向でその屈折率が変化する。偏光調整手段2において、低い屈折率を有する方向を速軸、速軸に対して直角な方向で高い屈折率を有するほう光を遅軸という。
【0041】
図2において、速軸をx、遅軸をy、入射光の進む方向をzとする。入射光の偏光面がx軸、y軸に対してほぼ45°傾くように入射させると、偏光調整手段2内では速軸に平行な偏光成分と遅軸に平行な成分に分解され、それぞれ異なる屈折率で偏光調整手段2を通過する。
【0042】
入射光のうち遅軸に平行な偏光成分と速軸に平行な偏光成分との間に位相差が発生することで、偏光調整手段2から出射するレーザー光L11は楕円偏光となる。偏光調整手段2に印加される電場の変化に応じて、遅軸方向の屈折率と速軸方向の屈折率との差が変化する。
【0043】
これにより、偏光調整手段2から出射される楕円偏光の楕円率と楕円方位角が変化し、後述する非線形光学結晶3において波長変換に寄与する偏光成分の光量が変化する。従って、非線形光学結晶3からの波長変換光L2の出力を変化させることができる。なお、波長に寄与する偏光成分以外の偏光成分は、非線形光学結晶3に入射しても波長変換には寄与しない。
【0044】
非線形光学結晶3は、レーザー光源1からの基本波又はその高調波を入射光として、波長変換光を発生する。なお、図1に示す例では、1つの非線形光学結晶3のみを図示しているが、実際には複数個の非線形光学結晶が設けられている。非線形光学結晶3は、レーザー光L11を波長270nm以下の紫外域の波長変換光に変換する。
【0045】
ここで、非線形光学結晶3が、図2の入射光であるレーザー光L1の偏光面と垂直な方向の偏光成分に対して位相整合して波長変換を行うように構成されているものとする。すなわち、非線形光学結晶3における波長変換に寄与する偏光成分が、図2の入射光であるレーザー光L1の偏光面と垂直な方向であるものとする。偏光調整手段2に電圧を加えることにより入射光の偏光面と垂直な偏光成分は増加する。これより、非線形光学結晶3で発生する波長変換光L2の出力を増大させることができる。
【0046】
なお、偏光調整手段2の出射側に偏光子を設けてもよい。偏光子は、非線形光学結晶3における波長変換に寄与する入射光の偏光成分を透過するように配置される。また、偏光子は、非線形光学結晶3での波長変換に寄与しない偏光成分を反射する。偏光調整手段2と偏光子とは、光アッテネータを構成する。
【0047】
偏光調整手段2により楕円偏光化したレーザー光L11の偏光子を透過した後の透過率Tは、位相差をΓとすると、以下の式(1)のように表される。

【0048】
ここで、Vπは位相差が180°となる半波長電圧である。偏光調整手段2に電圧を加えることにより入射光の偏光面と垂直な偏光成分は増加し、V=Vπにおいて透過率は最大の1となる。
【0049】
非線形光学結晶3が、この偏光成分に対して位相整合して波長変換作用を行うように構成すれば、偏光調整手段2への印加電圧の変化により非線形光学結晶から発生する波長変換光出力を変化させられる。なお、偏光子を透過しない偏光成分は非線形光学結晶3での波長変換に寄与しないので、偏光子が無くても波長変換出力を変化させられることには変わりない。
【0050】
非線形光学結晶3で発生した波長変換光L2は、変換されずに残存する残存基本波光L3とダイクロイックミラー4aにより分離される。そして、波長変換光L2は、ダイクロイックミラー4b、空間コヒーレンス劣化手段5、部分反射ミラー6を経て外部に出力される。
【0051】
空間コヒーレンス劣化手段5は、入射する波長変換光L2のコヒーレンスを劣化させ、スペックルを除去する。空間コヒーレンス劣化手段5としては、例えば、回転拡散板や回折型レンズ素子等のモータ等により回転駆動される光学素子を用いることができる。また、空間コヒーレンス劣化手段5としては、液晶空間光変調素子又は形状可変鏡を用いることも可能である。
【0052】
部分反射ミラー6は、波長変換光L2の一部を分岐する。分岐された波長変換光L2の一部は、光検出器7に入射する。光検出器7は、入射した波長変換光L2を電気信号(電圧信号)に変換して制御器8に入力する。参照用電圧発生器9は、目標値となる電圧を発生する。
【0053】
制御器8は、参照用電圧発生器9からの電圧を目標値として、光検出器7の出力との偏差を適切に負帰還して、偏光調整手段2へ印加する電圧を制御する。すなわち、制御器8は、光検出器7の出力電圧と、参照用電圧発生器9の目標値とがほぼ等しくなるように、偏光調整手段2に印加する電圧を制御する。
【0054】
これにより、光検出器7からの出力電圧は、参照用電圧発生器9の目標値とほぼ等しく保たれ、波長変換光L2の出力を略一定にすることができる。このように、本発明によれば、長期的な出力変動を抑制することができる。また、電気光学効果を用いた光学素子を偏光調整手段2として用いることにより、回転拡散板等の空間コヒーレンス劣化素子を用いた場合に生じる光ノイズも含めてkHzオーダーの高周波ノイズを補償することが可能となる。
【0055】
図3を参照して、本実施の形態に係る光源装置の効果について説明する。図3は、波長変換光の出力(図中、光出力とする)及び偏光調整手段2への電気信号の変化を示すグラフである。図3(a)は偏光調整手段2に対して一定の電気信号を供給する例を示しており、同図(b)は実施の形態1のように偏光調整手段2に対して波長変換光の出力が一定となるように偏光調整手段2への電気信号を変動させる例を示している。
【0056】
図3から分かるように、図3(b)では図3(a)のような波長変換光の光ノイズが除去されている。本図の例では、図3(a)では光出力の安定度は6.2%ppであるのに対し、図3(b)では光出力の安定度は0.5%ppである。このように、本発明によれば、空間コヒーレンス劣化手段5を通過した波長変換光の光ノイズは1/12以下に抑制される。
【0057】
実施の形態2.
本発明の実施の形態2に係る光源装置について図4を参照して説明する。図4は、本実施の形態に係る光源装置の構成を示す図である。図4において、図1に示す構成要素と同一の構成要素には同一の符号を付し、説明を省略する。
【0058】
図4に示すように、本実施の形態に係る光源装置は、図1に示す光源装置の構成に加え、分圧回路10、コンピュータ11、モータ制御器12、1/2波長板13を備えている。レーザー光源1と偏光調整手段2との間には、1/2波長板13が設けられている。
【0059】
1/2波長板13は、位相差がπ(180度)となるものであり、直線偏光を回転させる機能を有する。回転角は、入射光の偏光方向と、1/2波長板13の遅軸とのなす角で調整される。例えば、直線偏光の入射光に対し遅軸を45度になるように配置すると、入射光の偏光面が90度回転する。
【0060】
1/2波長板13は、図示しないモータ等の回転駆動機構により回転駆動される。1/2波長板13を回転駆動することにより、入射光の偏光面の角度が変化する。すなわち、非線形光学結晶3の波長変換に寄与する偏光成分の強度が、1/2波長板13の回転に応じて変化する。このように、1/2波長板13を回転駆動することにより、波長変換光L2の出力が調整される。
【0061】
なお、上述のように、本実施の形態においても偏光調整手段2の出射側に偏光子を設けてもよい。偏光子は、偏光調整手段2への印加電圧が0のときに透過率が最大となり、かつ、その透過光の偏光成分が非線形光学結晶3において位相整合して波長変換するように配置することができる。この場合、偏光子の透過率Tは、以下の式(2)のようになる。

もちろん、先に記したように偏光子は必ずしも設ける必要はない。
【0062】
制御器8の出力と偏光調整手段2との間には、分圧回路10が接続されている。分圧回路10には、偏光調整手段2に印加される電圧が入力され、分圧された電圧を出力する。分圧回路10と1/2波長板13の駆動手段との間には、コンピュータ11、モータ制御器12が設けられている。
【0063】
コンピュータ11は、分圧回路10で分圧された電圧を監視し、その値が偏光調整手段2に印加される電圧範囲の略半分の値になるように1/2波長板13の角度を制御するための制御信号をモータ制御器12に入力する。モータ制御器12は、コンピュータ11からの制御信号に基づいて1/2波長板13の駆動手段を制御する。
【0064】
これにより、偏光調整手段2に印加される電圧は略一定となる。偏光調整手段2に印加される電圧は、モータ等により駆動される1/2波長板13の回転では追いつかない、高速の波長変換光L2の出力変化があった場合にのみ変化する。すなわち、この構成の場合、偏光調整手段2へ印加が必要な電圧は、様々な要因による波長変換出力の揺らぎの補償に必要な範囲で十分である。
【0065】
例えば、第4高調波発生光の出力に±4%の光ノイズがある場合、偏光調整手段2に印加すべき最大の電圧は、Vπの約1%あればよい。一般的な偏光調整手段2のVπは数kVであるが、本実施の形態においては、数十Vないし精々100V程度でよいこととなり、高電圧電源回路が不要となる。
【0066】
このように、本実施の形態によれば、高繰返しパルスレーザーを用いた多段階の波長変換による紫外光源において、短期、長期の出力を安定化するととともに、消費電力を低減することが可能となる。なお、上述の例では、位相差板として1/2波長板を用いる例について説明したが、必ずしも位相差は正確に1/2波長である必要はない。
【0067】
図5に、本発明に係る光源装置において用いられる偏光調整手段2の他の例を示す。図5に示す偏光調整手段20は、光弾性効果によって屈折率変化を生じる光弾性体を用いた光学素子である。図5に示すように、偏光調整手段20は、光弾性体21、圧電素子22、バネ23を備えている。図5において、実線の矢印方向を入射光の偏光方向とし、破線の矢印方向を応力方向とする。
【0068】
光弾性体とは、外力を加えると、歪の大きさと向きに応じて光弾性効果により物質の屈折率が変化し、複屈折の大きさと向きが変化する物質である。この現象は応力複屈折ないし光弾性複屈折と呼ばれる。光学ガラスを含め、通常のほとんどの固体物質は光弾性体である。
【0069】
光弾性体21に応力を加えると、応力と平行な方向に偏光面を有する偏光に対する屈折率と、それに直交する方向に偏光面をする偏光に対する屈折率が変化する。図5に示すように、応力方向と45°傾いた方向に偏光面を持つ直線偏光の光が入射した場合、応力のほうに平行及び直交の各偏光成分に位相差が生じる複屈折が起こり、出射する光の直線偏光性は崩れて、一般に楕円偏光となる。
【0070】
出射光の偏光度は、加える応力の大きさにより高速で変化させることができる。たとえ光弾性体21の全面で一様な複屈折性を形成できなくとも、後段の非線形光学結晶3への僅かな偏光成分の変化をもたらすことができる。
【0071】
図5に示す例では、光弾性体21に印加する応力の発生源として、圧電素子22が用いられている。圧電素子22は、圧電体に加えられた電圧を力に変換する圧電効果を利用した素子で、ピエゾ素子といわれるものである。圧電素子22位いることにより、上述の電気光学効果を利用した偏光調整手段2と同様に、数10kHzオーダーの高速な出力変化が可能である。
【0072】
本発明によれば、簡易手段によって、短期、長期ともに±0.5%以下の出力安定性を達成することができ、半導体検査等に適した波長変換による紫外光源装置が実現できる。特に、縦マルチモードで高繰返しパルス発振のNd:YAGレーザー、Nd:YVO4レーザー、ファイバーレーザー等を励起レーザー光源として、多段階の波長変換により発生される波長266nmの第4高調波発生や213nmの第5高調波発生において顕著となる出力不安定性を補償するのに有効である。
【0073】
さらに、スペックルを低減させるために回転拡散板等の空間コヒーレンス劣化手段5を配置したことにより生じる出力の変動、光ノイズが発生する場合においても、安定した出力の波長変換光を得ることが可能となる。
【0074】
なお、上記の実施の形態においては、偏光調整手段2がレーザー光源1から出射する波長1030〜1080nmの基本波に対して作用する例について説明したが、これに限定されるものではない。以下、図6〜図8を参照して、非線形光学結晶3の配置例と、偏光調整手段2がどのレーザー光に作用するかについて説明する。ここでは、レーザー光源1が出射するレーザー光の波長を1064nmであるものとする。
【0075】
図6に示す例では、非線形光学結晶3として、第1非線形光学結晶3a、第2非線形光学結晶3bが設けられている。第1非線形光学結晶3a及び第2非線形光学結晶3bは、レーザー光源1の外部に配置されている。
【0076】
レーザー光源1からの波長1064nmのレーザー光L1は、第1の非線形光学結晶3aにより波長532nmの第2高調波に変換される。第1の非線形光学結晶3aからの第2高調波は、第2非線形光学結晶3bにより波長266nmの第4高調波に変換される。すなわち、この例では、第4高調波発生により270nm以下のレーザー光が波長変換光として出射される。
【0077】
偏光調整手段2は、基本波又は波長532nmの第2高調波に作用することができる。偏光調整手段2が第2高調波に対して作用する場合、第2高調波の第2非線形光学結晶3bにおいて波長変換に寄与する偏光成分を調整することができる。なお、図7に示すように、第1非線形光学結晶3aは、レーザー光源1を構成する共振器の内部に配置しても良い。
【0078】
図8に示す例では、非線形光学結晶3として、第1非線形光学結晶3a、第2非線形光学結晶3b、第3非線形光学結晶3cが設けられている。これらの第1非線形光学結晶3a、第2非線形光学結晶3b、第3非線形光学結晶3cは、レーザー光源1の外部に配置されている。
【0079】
レーザー光源1からの波長1064nmのレーザー光は、第1非線形光学結晶3aにより波長532nmの第2高調波に変換される。この第2高調波は、第2非線形光学結晶3bにより、波長266nmの第4高調波に変換される。第3非線形光学結晶3cには、第4高調波と波長1064nmの残存基本波とが入射する。
【0080】
第3非線形光学結晶3cは、第4高調波と残存基本波との和周波混合により、波長213nmのレーザー光を出射する。すなわち、この例では、波長変換光は、基本波と第4高調波の和周波混合により発生する216nm以下の紫外光である。
【0081】
図8に示すように、偏光調整手段2は、基本波、波長532nmの第2高調波又は波長266nmの第4高調波に対して作用する。偏光調整手段2が第2高調波に対して作用する場合、第2高調波の第2非線形光学結晶3bにおいて波長変換に寄与する偏光成分を調整することができる。偏光調整手段2が第4高調波に対して作用する場合、第4高調波の第3非線形光学結晶3cにおいて波長変換に寄与する偏光成分を調整することができる。
【0082】
なお、本発明は上記実施の形態に限られたものではなく、趣旨を逸脱しない範囲で適宜変更することが可能である。
【符号の説明】
【0083】
1 レーザー光源
2 偏光調整手段
3 非線形光学結晶
4 ダイクロイックミラー
5 空間コヒーレンス劣化手段
6 部分反射ミラー
7 光検出器
8 制御器
9 参照用電圧発生器
10 分圧回路
11 コンピュータ
12 モータ制御器
13 1/2波長板
20 偏光調整手段
21 光弾性体
22 圧電素子
23 バネ
L1 レーザー光
L2 波長変換光
L3 残存基本波光

【特許請求の範囲】
【請求項1】
基本波を発生するレーザー光源と、
前記基本波又はその高調波を入射光として、波長変換光を発生する少なくとも1つの非線形光学結晶と、
前記入射光の光路上に配置され、当該入射光の偏光成分に対する屈折率を変化させて、前記波長変換光の出力を変化させる偏光調整手段と、
を備える光源装置。
【請求項2】
前記波長変換光の出力を電気信号出力に変換する光出力測定器を備え、
前記偏光調整手段は、前記光出力測定器からの前記電気信号出力に応じて前記屈折率の変化量を変化させることを特徴とする請求項1に記載の光源装置。
【請求項3】
前記入射光の光路上に設けられ、前記偏光調整手段に印加される電気信号が略一定となるように、前記入射光のうち前記非線形光学結晶に入射して波長変換に寄与する偏光成分を調整する位相差板をさらに備える請求項2に記載の光学装置。
【請求項4】
前記波長変換光の光路上に設けられ、前記波長変換光の空間コヒーレンスを劣化させる光学手段を備える請求項1、2又は3に記載の光源装置。
【請求項5】
前記光学手段は、回転駆動される光学素子、液晶空間光変調素子又は形状可変鏡を含むことを特徴とする請求項4に記載の光源装置。
【請求項6】
前記偏光調整手段は、光弾性効果又は電気光学効果によって屈折率変化を生じる光学素子であることを特徴とする請求項1〜5のいずれか1項に記載の光源装置。
【請求項7】
前記基本波の波長は1030〜1080nm、前記波長変換光は第4高調波発生による270nm以下の紫外光であり、
前記偏光調整手段は、前記基本波又は第2高調波に対して作用することを特徴とする請求項1〜6のいずれか1項に記載の光源装置。
【請求項8】
前記基本波の波長は1030〜1080nm、前記波長変換光は前記基本波と第4高調波の和周波混合により発生する216nm以下の紫外光であり、
前記偏光調整手段は、前記基本波、第2高調波又は第4高調波に対して作用することを特徴とする請求項1〜6のいずれか1項に記載の光源装置。
【請求項9】
前記レーザー光源は、縦マルチモードの基本波を発生することを特徴とする請求項1〜8のいずれか1項に記載の光源装置。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate

【図7】
image rotate

【図8】
image rotate


【公開番号】特開2011−43548(P2011−43548A)
【公開日】平成23年3月3日(2011.3.3)
【国際特許分類】
【出願番号】特願2009−189912(P2009−189912)
【出願日】平成21年8月19日(2009.8.19)
【出願人】(000115902)レーザーテック株式会社 (184)
【Fターム(参考)】