説明

Fターム[5F082CA02]の内容

バイポーラIC (6,722) | 基板材料 (301) | 3−5族 (117)

Fターム[5F082CA02]に分類される特許

101 - 117 / 117


【課題】HBT、HEMTという異種類のトランジスタを、極めて小さい接続抵抗の下で接続した構成を持つ化合物半導体エピタキシャルウェハを提供すること。
【解決手段】同一ウェハ内で、一単位のHBTエピタキシャル層(HBT構造40)の上に一単位のHEMTエピタキシャル層(HEMT構造50)を積層した構造とする。 (もっと読む)


【課題】 半導体装置の熱抵抗を低減すること、および小型化できる技術を提供する。
【解決手段】 複数の単位トランジスタQを有する半導体装置であって、半導体装置は、単位トランジスタQを第1の個数(7個)有するトランジスタ形成領域3a、3b、3e、3fと、単位トランジスタQを第2の個数(4個)有するトランジスタ形成領域3c、3dとを有し、トランジスタ形成領域3c、3dは、トランジスタ形成領域3a、3b、3e、3fの間に配置され、第1の個数は、第2の個数よりも多い。 (もっと読む)


【課題】 熱的安定性と信頼性を両立し、さらに静電破壊耐量を向上したHBTを備えた半導体装置を提供する。
【解決手段】 化合物半導体からなる基板の主面上に、順に形成されたサブコレクタ層、コレクタ層、ベース層4およびエミッタ層5、ならびにコレクタ層4と電気的に接続されたコレクタ電極、ベース層4と電気的に接続されたベース電極、エミッタ層5上に形成され、エミッタ層5と電気的に接続されたエミッタメサ層6M、およびエミッタメサ層6Mと電気的に接続されたエミッタ電極13を備えたHBTであって、このエミッタメサ層6Mが、n型GaAs層からなる半導体層6と、半導体層6上のn型GaAs層からなる高濃度半導体層6Bと、高濃度半導体層6B上のn型InGaAs層からなるバラスト抵抗層7とを有する。 (もっと読む)


【課題】 寄生容量及び寄生抵抗の低減を図ることにより、高周波特性の向上を図ることができる、光電子集積素子及びその製造方法を提供することにある。
【解決手段】 光電子集積素子100は、基板110と、基板110の上方に設けられ、第1ミラー120と、活性層122と、第2ミラー124と、を含む面発光型半導体レーザ100Vと、面発光型半導体レーザ100Vの上方に設けられ、少なくとも光吸収層142を含むフォトダイオード100Pと、基板110の上方に設けられたバイポーラトランジスタ100Bと、を含む。バイポーラトランジスタ100Bは、第1ミラー120、活性層122、第2ミラー124、及び光吸収層142のそれぞれと同一の半導体層を含む。 (もっと読む)


【課題】 マイクロ波集積回路において、能動素子入力部に配置されるノイズ信号カット用容量素子は、容量素子形成に必要な配線等の部品も含め、大きな面積を必要とし、チップサイズ小型化阻害の要因となっている。又、半導体能動素子、特に電界効果トランジスタにおいては、メサ型素子分離の際、メサ段差部分におけるゲート金属の段切れ、ゲート金属と能動層との接触による特性劣化が問題となっている。
【解決手段】 本発明では、チップ裏面に形成される容量素子において、半導体デバイスの1端子の直下に容量素子の2電極のいずれか一方を接続した構造および、半導体デバイスの1端子の直下に容量素子を作製する。又、半導体表面の平面上にゲート金属を被着し、その後裏面から半導体基板およびトランジスタ能動領域以外の能動層を除去する。 (もっと読む)


【課題】 HBT(Hetero-junction Bipolar Transistor)の特性を向上させる。
【解決手段】 HBT(Q)は、化合物からなる基板の主面上に順に形成されたコレクタ層、ベース層、エミッタ層およびそれぞれに電気的に接続されたコレクタ電極9a、ベース電極8、エミッタ電極7を有し、さらにエミッタ電極7とエミッタ層との間に形成されたエミッタコンタクト層6を有する。その基板の主面に平行な平面において、エミッタコンタクト層6およびエミッタ電極7の平面形状は、ベース電極8を囲う略環状形状を有し、エミッタコンタクト層6の最小寸法Leは、1.2μm以上である。 (もっと読む)


【課題】 小型化および低消費電力化を図りつつ負荷変動時のHBTの破壊を有効に防止することのできる高周波電力増幅用電子部品(RFパワーモジュール)および移動体通信システムを提供する。
【解決手段】 高周波電力増幅回路の少なくとも最終段の増幅素子(Q1)がHBT(ヘテロ接合バイポーラ・トランジスタ)で構成されている高周波電力増幅用電子部品おいて、上記HBTとしてそのコレクタ電流−コレクタ電圧特性の非破壊領域と破壊領域との境界が逆S字カーブを有し、該逆S字カーブの極小値が当該高周波電力増幅用電子部品(RFパワーモジュール100)に接続される電源(200)の実使用時に想定される電圧の最大値の4倍以上の領域に存在するHBTを用いるようにした。 (もっと読む)


【課題】増幅器としての高周波特性を損ねることなく、バイポーラトランジスタの過電流による熱的な粗密を緩和することができ、半導体素子の破壊を小規模な回路構成で防ぐことができる半導体装置を提供する。
【解決手段】複数のHBTを並列接続した高出力トランジスタの各ベースごとにバイアス電流の印加を制御し、また、エミッタ数が、ベースの数nに対して2の(n−1)乗倍で増大するマルチエミッタ素子を使うことにより、2進数により表せる値で各ベースごとのバイアス電流の印加を制御し、また、非常に大きな構造を有する方向性結合器の代わりに、高出力トランジスタのエミッタをマルチエミッタ構造にし、そのエミッタの一つの電流をモニタする。 (もっと読む)


【課題】 能動素子、受動素子、配線、及び電極からなる半導体装置において、機械的強度の確保、小型化、及び熱的安定性を満たすことの出来る半導体装置を提供することにある。
【解決手段】 半導体装置において、能動素子直下の開口の位置に開口を充填するための導体層を有し、開口のない位置にも導体層を形成する。 (もっと読む)


【課題】チップ面積の増大を抑制しつつ、電流コラプス現象を低減することができる半導体装置と高周波増幅器を提供する。
【解決手段】半導体装置は、GaAs基板6と、GaAs基板の上に設けられたサブコレクタ層5と、サブコレクタ層5の上の一部に設けられたコレクタ層4と、コレクタ層4の上に設けられたベース層(第1の半導体層)3と、ベース層3のうち真性ベース領域11の上に設けられた第2エミッタ層(第2の半導体層)2aと、ベース層3のうち外部ベース領域2aの上に設けられた第2エミッタ層(第2の半導体層)2bと、第2エミッタ層2aの上に設けられた第1エミッタ層1とを有している。 (もっと読む)


【課題】 サージへの耐性を向上させると共に、リーク電流の低減を図ることができる保護ダイオードを提供する。
【解決手段】 n型のnGaAs層6と、nGaAs層上に形成されたn型のnGaAs層7を備え、nGaAs層内にp型エミッタ領域8及びp型コレクタ領域9が形成された保護ダイオードであって、nGaAs層のドーパントのドーピング濃度をnGaAs層のドーパントのドーピング濃度よりも小さくする。 (もっと読む)


【課題】 高周波動作時における各トランジスタの高周波電力利得の差の発生を抑制し、高周波での動作の均一性に優れた半導体装置を提供する。
【解決手段】 半導体装置10は、接地配線の接地距離の長さがより大きいGaAsHBT12のベース引き出し配線14−コレクタ引き出し配線15間に接続された容量素子20の容量をより小さくしている。これによって、各GaAsHBT12の接地インダクタンスの増加に伴う高周波電力利得の低下を、容量素子20の容量の低減による高周波電力利得の増加によって補償することができる。したがって接地インダクタンスの差異によって生じる各GaAsHBT12の高周波電力利得の差を少なくすることができる。このように半導体装置10では、高周波動作時における各GaAsHBT12の不均一な動作の発生を抑制することができる。 (もっと読む)


【課題】 面積やコストの増大を生じることなく高いESD耐性を実現することのできるESD保護回路を提供する。
【解決手段】 端子20と接地端子30の間に接続されるESD保護回路1は、3段のダーリントン接続のトランジスタ11〜13と、トランジスタ13のベースと接地端子30間に接続されてトランジスタ13の耐圧を向上させる抵抗14と、トランジスタ13の導通開始電圧調整のために端子20とトランジスタ11のベース間に接続されるダイオード15〜17を有する。端子20へ高電位のESDが入力されるとダーリントン接続されたトランジスタ11〜13が急速に導通し、トランジスタ13が端子20の電荷を接地端子30へ向かって大電流で引き抜く。 (もっと読む)


【課題】 小型化を図ることができる半導体装置を提供する。また、放熱効率を向上させた半導体装置を提供する。
【解決手段】 配線基板10の裏面にGND用外部配線12を形成する。そして、このGND用外部配線12に接続する複数のビア18を、配線基板10を貫通するように形成し、配線基板10の主面にHBTを含む高消費電力の第1の半導体チップ19を実装する。第1の半導体チップ19のエミッタバンプ電極19bは、第1の半導体チップ19内に形成された複数のHBTのエミッタ電極に共通接続しており、HBTが並んだ方向に延在している。第1の半導体チップ19は、この延在したエミッタバンプ電極19bに複数のビア18が接続するように配線基板10に実装されている。また、第1の半導体チップ19上に第1の半導体チップ19より発熱量の少ない第2の半導体チップ21を搭載して配線基板10の小型化を図る。 (もっと読む)


【課題】
【解決手段】 バイポーラ接合トランジスタ(100)に関連する方法、装置、デバイスの実施例が記載されている。 (もっと読む)


例示的一実施例によれば、基板上に位置するBiFETは、基板の上に位置するエミッタ層部分を含み、エミッタ層部分は第1のタイプの半導体を含む。HBTはエッチストップ層の第1の部分をさらに含み、エッチストップ層の第1の部分はInGaPを含む。BiFETは基板の上に位置するFETをさらに含み、FETはソース領域およびドレイン領域を含み、エッチストップ層の第2の部分はソース領域およびドレイン領域の下に位置し、エッチストップ層の第2の部分はInGaPを含む。FETはエッチストップ層の第2の部分の下に位置する第2のタイプの半導体層をさらに含む。エッチストップ層はFETの線形性を増大させ、HBTの電子の流れを低下させない。
(もっと読む)


半導体部品は、半導体基板(110)と、半導体基板の上方のエピタキシャル半導体層(120)と、エピタキシャル半導体層内のバイポーラトランジスタ(770、870)と、エピタキシャル半導体層内の電界効果トランジスタ(780、880)とを含む。エピタキシャル半導体層の一部によって、バイポーラトランジスタのベースと電界効果トランジスタのゲートとが形成され、エピタキシャル半導体層のその一部は実質的に均一なドーピング濃度を有する。同じまたは他の実施形態においては、エピタキシャル半導体層の異なる部分によって、バイポーラトランジスタのエミッタと電界効果トランジスタのチャネルとが形成され、エピタキシャル半導体層のその異なる部分はエピタキシャル半導体層の一部の実質的に均一なドーピング濃度と同じかまたは異なる実質的に均一なドーピング濃度を有する。
(もっと読む)


101 - 117 / 117