説明

Fターム[4C061NN01]の内容

内視鏡 (60,615) | 技術の対象 (4,630) | 撮像部、照明部 (2,050)

Fターム[4C061NN01]に分類される特許

81 - 100 / 2,050


【課題】光源における蛍光体の励起光量を変化させたとしても、色味の変わらない、ホワイトバランスが保たれた撮像画像を取得することができる内視鏡装置を提供する。
【解決手段】第1の狭帯域光を出射する第1の光源42と、第1の狭帯域光の少なくとも一部を透過すると共に、第1の狭帯域光によって励起された蛍光光を発光し、第1の光源の出射光量に応じて蛍光特性が変化する蛍光体20と、第1の光源とは異なる第2の狭帯域光を出射する第2の光源44と、第1及び第2の狭帯域光及び蛍光光を混合した光が照明光として照射された被写体からの、照明光の戻り光により撮像を行い、撮像画像信号を出力する撮像部26と、撮像画像信号が基準のホワイトバランスを維持するように、第1の光源42の出射光量による蛍光体20の蛍光特性の変化に基づいて、第2の光源44の出射光量を制御する制御部50と、を備えることにより、上記課題を解決する。 (もっと読む)


【課題】蛍光体の周囲を確実に封止し、水分や揮発したガスの進入を防止する。
【解決手段】照明光学系ユニット26Aは、光ファイバ37Aと、蛍光体38と、蛍光体38及び光ファイバ37Aを保持する保持部材としてのフェルール60と、蛍光体38の外周を覆う筒状のスリーブ部材61と、保護カバー36とから構成される。フェルール60は、蛍光体38を保持し、スリーブ部材61の嵌合孔71に嵌合される。スリーブ部材61の内周面70aと保護カバー36の外周面36aとを接着して蛍光体38の先端側が封止され、スリーブ部材61の嵌合孔71とフェルール60の外周面60cとを接着して蛍光体38の基端側を接着する。 (もっと読む)


【課題】シリアル伝送により画像信号を伝送しつつ画像信号の劣化を防止する。
【解決手段】撮像素子と、撮像素子からの信号をサンプルホールドするサンプルホールド回路と、サンプルホールド回路からの信号を伝送するシリアルケーブルと、シリアルケーブルにより伝送された信号に対して帯域補正処理を行う帯域補正部とを有する電子内視鏡を提供する。 (もっと読む)


【課題】光源の発光波長が変わったとしても、また、出射光量を変えたとしても、撮像画像のホワイトバランスの変わらない内視鏡装置を提供する。
【解決手段】第1の波長の第1の狭帯域光を出射する第1の光源42、第2の狭帯域光を出射する第2の光源44、及び第1の波長を記憶する光源情報記憶部48を有し、第1の波長は、第1の中心発光波長に対して所定の変動範囲内に入るものである光源装置12と、励起されて第1の蛍光光を発光し、第1の狭帯域光の出射光量及び励起波長の変動に応じて蛍光特性が変化する蛍光体20、第1の蛍光特性を記憶する蛍光特性記憶部29、撮像画像信号を出力する撮像部26と、を有する内視鏡11と、励起波長とその変動に対する第1の蛍光特性を読み出し、ホワイトバランスが所定の範囲に入るように、第2の狭帯域光の出射光量を算出し、制御する制御部50を有するプロセッサ装置13と、を備える内視鏡装置10を提供する。 (もっと読む)


【課題】通常光撮影とPDD光撮影とを切り替えて行う場合において、それぞれの撮影に最適な露光を実現し、最適な撮像画像を得ることができる内視鏡装置を提供する。
【解決手段】広帯域光を出射する第1の光源部LD1と、狭帯域光を出射する第2の光源部LD2と、各発光及び各照射光量を制御する光源制御部72と、被写体からの戻り光及び蛍光光により、通常光画像及び蛍光画像をフレーム毎に撮像する撮像部21と、蛍光光の強度に応じて撮像時間を決定する撮像時間決定部34と、撮像部を制御する撮像制御部34と、第1の光源の発光条件を決定する発光条件決定部52と、を有し、光源制御部72は、第1のフレームにおいて第1の光源部LD1を発光させ、次の第2のフレームにおいて第2の光源部LD2を発光させ、通常光画像の撮像と蛍光画像の撮像とを少なくとも含む一連の撮像を順次に繰り返す。 (もっと読む)


【課題】走査方式に依存した蛍光の褪色を抑えるのに好適な走査型共焦点内視鏡システムを提供すること。
【解決手段】走査型共焦点内視鏡システムを、二次元平面を周期的に移動して被写体に励起光を走査する点光源と、励起光の照射密度が走査領域の全域で所定密度以下になるように点光源を制御する点光源制御手段と、励起光の集光点と共役の位置に配置された共焦点ピンホールと、励起光により励起された被写体から発生した蛍光を共焦点ピンホールを介して受光して画像信号を検出する画像信号検出手段と、検出された画像信号を用いて共焦点画像を生成する画像生成手段とから構成する。 (もっと読む)


【課題】蛍光画像におけるノイズ量を低減しながら蛍光画像における像ブレの発生を防止する。
【解決手段】被写体Aに対し、励起光および照明光を照射する照明部3と、照明部3からの励起光の照射により被写体Aにおいて発生した蛍光を撮影し蛍光画像を取得する蛍光撮像部18と、取得された蛍光画像を記憶する記憶部と、照明部3からの照明光の照射により被写体Aから戻る戻り光を撮影し戻り光画像を取得する戻り光撮像部18と、取得された戻り光画像から、被写体Aに照射された照明光の強度を表す画像情報を抽出する画像情報抽出部と、抽出された画像情報に基づいて照明光の強度が高いほど少なく積算枚数を設定する積算枚数設定部と、設定された積算枚数分だけ記憶部に記憶されている蛍光画像を平均して平均画像を生成する平均画像生成部とを備える蛍光内視鏡装置1を提供する。 (もっと読む)


【課題】低コントラストの被写体でも適切なオートフォーカスを行うことが可能な内視鏡装置、フォーカス制御方法及びプログラム等を提供すること。
【解決手段】内視鏡装置は、第1画像取得部と、第2画像取得部と、フォーカス制御部150と、を含む。第1画像取得部は、生体内の被写体を撮像光学系により撮像した画像であって、白色光の波長帯域における情報を有した被写体像を含む画像を、第1画像として取得する。第2画像取得部は、第1画像に対応して、特定の波長帯域における情報を有した被写体像を含む画像を第2画像として取得する。フォーカス制御部150は、第2画像の中の被写体像に合焦させる制御を行って、撮像光学系のフォーカス調整を行う。第1画像取得部は、フォーカス調整された撮像光学系により撮像した第1画像を取得する。 (もっと読む)


【課題】出力すべき光の目標発光量に応じて、常に安定した光を発生させることができる光源装置、および、これを使用する内視鏡装置を提供する。
【解決手段】光源装置は、同一の波長範囲の光を発するn個(nは、2以上の整数)の第1半導体光源と、第1半導体光源を制御する光源制御手段とを備える。光源制御手段は、m個(mは、1≦m≦n−1の整数)の第1半導体光源から光が発せられる場合の第1光の最大発光量と、(m+1)個の第1半導体光源から光が発せられる場合の第2光の最小発光量との間の値を基準発光量として、光源装置から出力すべき光の目標発光量が基準発光量よりも大きい場合、第2光の発光量が目標発光量となるように、(m+1)個の第1半導体光源を点灯し、目標発光量が基準発光量以下である場合、第1光の発光量が目標発光量となるように、m個の第1半導体光源を点灯するように制御する。 (もっと読む)


【課題】鏡筒に対してレンズを高い精度で調芯することを可能とし、且つコスト上昇を抑える。
【解決手段】撮像光学系ユニット35は、撮像光学系26と、撮像光学系26を保持する鏡筒37とからなる。鏡筒37は、先端硬性部24に取り付けられる。撮像光学系26は、レンズ群38を有する。レンズ群38は鏡筒37の内部に保持される。レンズ群38を構成するレンズ38Aを鏡筒37に接着して固定するとき、ガラスビーズ52を混入させた接着剤51を、レンズ38Aの外周面55と鏡筒37の内周面54との間に生じる隙間Tに流し込む。ガラスビーズ52の粒径は、隙間Tに合わせたものを選択している。 (もっと読む)


【課題】複数の半導体光源の出射光量比のバランスを崩すことなく、目標光量に高精度に制御することができる照明装置及びこれを備えた内視鏡装置を提供する。
【解決手段】照明装置は、互いに異なるスペクトルの光を出射する複数の半導体光源と、全出射光量に対する目標光量を設定する目標光量設定手段と、複数の半導体光源の出射光量比を設定する光量比設定手段と、設定された出射光量比に基づいて各半導体光源に対する駆動信号の振幅値をそれぞれ設定する振幅値設定手段と、各駆動信号を、設定された振幅値に保持しつつ目標光量に応じた共通のパルス変調制御により生成する駆動信号生成手段とを有する。目標光量が設定されると、その目標光量に応じた駆動パルス信号が各半導体光源に共通に設定され、この駆動パルス信号を出射光量比に応じた振幅値にして各半導体光源を駆動する個別駆動信号が生成される。 (もっと読む)


【課題】血管深さおよび血液量の影響を考慮して酸素飽和度を正確に算出し、酸素飽和度の分布を疑似カラー画像として表示することができる内視鏡診断装置を提供する。
【解決手段】内視鏡診断装置は、被検体に照明光を照射し、その反射光を撮像素子で撮像して、血中ヘモグロビンの酸素飽和度に応じて吸光係数が変化する2つの波長範囲の反射光に対応する第1および第2の画像信号および吸光係数が変化しない1つの波長範囲の反射光に対応する第3の画像信号を含む、460〜700nmの波長範囲の異なる3つ以上の反射光に対応する画像信号を取得する内視鏡装置と、取得した画像信号に基づいて、被検体の血液量および血中ヘモグロビンの酸素飽和度の情報を算出するプロセッサ装置と、酸素飽和度の情報に基づいて、酸素飽和度の分布を疑似カラー画像として表示する画像表示装置とを備える。 (もっと読む)


【課題】検査対象の経路を正確にマッピングするための動画ファイルを容易に生成することができる内視鏡装置を提供する。
【解決手段】内視鏡装置1は、検査対象を撮像する撮像素子14を先端部2aに備えた挿入部2と、挿入部2の挿入軸に対する回転角を検出するための情報を検出する重力センサ13と、挿入部2の検査対象に対する挿入長を計測する挿入長計測部4と、検査対象に進路変更があった際に、挿入部2の挿入方向の入力を指示する進路変更方角指示部17とを有する。そして、制御部25は、検査対象の内視鏡画像のフレーム毎に、挿入部2の回転角を検出するための情報と、挿入部2の挿入長の情報と、挿入部2の挿入方向の情報とを関連付けたAVIファイル30を生成し、画像記録部28に記録する。 (もっと読む)


【課題】半導体発光素子を用いて広いダイナミックレンジと高い光量分解能を確保し、高精度に光量制御が可能な内視鏡装置を提供する。
【解決手段】内視鏡装置は、照明光を生成する半導体光源と、電子シャッタにより露光期間を調整する撮像手段と、入力される目標光量に応じて半導体光源をパルス点灯駆動する光源制御手段とを備える。光源制御手段は、目標光量の高い順に、電子シャッタによる1フレーム内の露光期間に対し、所定の点灯期間になるまで駆動パルスのパルス数を減少させて半導体光源の点灯期間を短縮する第1のパルス変調(PNM)制御と、所定の点灯期間に対し、所定間隔で駆動パルスを間引くことで点灯期間内のパルス密度を減少させる第2のパルス変調(PDM)制御と、第2の制御範囲において最小パルス数とされた各駆動パルスに対し、パルス幅を減少させる第3のパルス変調(PWM)制御とを行うようにした。 (もっと読む)


【課題】位置の異なる2つの照明窓から照明光を照射して撮像された画像信号に現れる配光分布の違いを正しく補正することができ、正確な狭帯域光画像を得ることができる内視鏡診断装置を提供する。
【解決手段】内視鏡診断装置は、異なる位置に配置された第1および第2の照明窓を有し、第1の照明光を第1の照明窓から照射して撮像した第1の画像の画像信号、第3の照明光を内視鏡スコープの先端部に配置された蛍光体に照射することによって、蛍光体から発せられる疑似白色光である第2の照明光を第2の照明窓から照射して撮像した第2の画像の画像信号、および、第3の照明光を第1の照明窓からもしくは第1の照明光を第2の照明窓から照射して撮像した第3の画像の画像信号を取得する内視鏡装置と、第1および第2の画像の画像信号に現れる第1および第2の照明光の配光分布の違いを、第3の画像の画像信号を用いて補正する配光分布補正手段とを備える。 (もっと読む)


【課題】照明光にフリッカを生じさせず、高い光量分解能を確保して高精度に光量制御が可能な内視鏡装置を提供する。
【解決手段】内視鏡装置は、内視鏡挿入部27の先端35から所望の光量の照明光を出射し、照明光を生成する複数の半導体光源67と、入力された目標光量に応じてパルス密度の変調された駆動パルスにより、半導体光源67をパルス点灯駆動する光源制御手段73と、を備える。光源制御手段73は、複数の半導体光源67をそれぞれパルス点灯制御する第1の制御から、少なくとも目標光量が、駆動パルスの隣接するパルス間隔がフリッカ発生光量となる場合に、1つの半導体光源67だけを点灯し、1つの半導体光源67を増加させた点灯周波数でパルス点灯制御する第2の制御に切り替える。 (もっと読む)


【課題】調光反転現象を回避しつつ、撮像画像の光量に応じた最適な調光制御と撮像制御を行い、高画質な画像を取得できる内視鏡装置を提供する。
【解決手段】内視鏡装置は、電子シャッタ機能を有する撮像素子が搭載された内視鏡スコープと、制御装置とを有する。内視鏡スコープは、電子シャッタのシャッタ速度を制御する撮像制御手段を備える。制御装置は、半導体光源と、出射光量を制御する光源制御手段と、被検体像の光量を検出する光量検出手段と、光量に対応するシャッタ速度目標値と出射光量目標値とをそれぞれ求め、シャッタ速度制御信号を前記撮像制御手段に、光源制御信号を前記光源制御手段にそれぞれ出力して、撮像素子の露光量を制御する露光制御手段とを備える。露光制御手段は、光量に応じて、シャッタ速度制御で露光量を制御するシャッタ速度制御と、光源制御で露光量を制御する出射光量制御とのいずれかに切り替える。 (もっと読む)


【課題】原同期信号を送受信することなく、原輝度信号成分に基づいて正確な輝度を検知する。
【解決手段】内視鏡プロセッサ20は光源システム21、調光処理回路22、映像処理回路23、システムコントローラ24、およびタイミングコントローラ27を有する。映像処理回路23は信号処理回路36から処理輝度信号を受信する。タイミングコントローラ27はシステムコントローラ37、システムコントローラ24を介して電子内視鏡のメモリから遅延量を受信する。調光処理回路22はマトリックス回路35から原輝度信号成分Yを、映像処理回路23から処理同期信号を、およびタイミングコントローラ27から遅延量を受信する。調光処理回路22は遅延量と処理同期信号に基づいて映像期間の始期から周期までの原輝度信号成分を積算する。調光処理回路22は積算することにより1フィールドの画像の輝度値を算出する。 (もっと読む)


【課題】被写界深度とダイナミックレンジが拡大された画像を生成可能な撮像装置、内視鏡装置及び画像生成方法等を提供すること。
【解決手段】撮像装置は、画像取得部と、露光量調整部240と、合成画像生成部を含む。画像取得部は、近点被写体にピントが合った近点画像と、近点被写体よりも遠い遠点被写体にピントが合った遠点画像を取得する。露光量調整部240は、遠点画像の露光量に対する近点画像の露光量の比率を調整する。合成画像生成部は、比率が調整された露光量により取得された近点画像と遠点画像に基づいて合成画像を生成する。 (もっと読む)


【課題】白色光等の光量値の制御を確実に行なうとともに、自家蛍光画像や通常光画像におけるコントラスト等のバランス調整を適切に行なう。
【解決手段】白色光などの照明光が体腔内照射された後に、励起光および参照光が同時に体腔内に照射される。体腔内からの照明光をカラーのCCDのB画素、G画素、R画素で撮像して照明光画像を得る。励起光の照射により体腔内の生体組織から発せられる蛍光をカラーのCCDのG画素、R画素で撮像して蛍光画像を得る。体腔内からの参照光を、蛍光の撮像に必要のない空きチャンネルであるカラー撮像素子のB画素で撮像して、参照光画像を得る。この参照光画像と照明光画像とを比較することにより、照明光照射時と励起光および参照光照射時の前後で、撮像距離が変化したか否かを判定する。この判定結果は、次の照射する照明光の光量の制御に反映される。 (もっと読む)


81 - 100 / 2,050