説明

Fターム[4G146BC47]の内容

炭素・炭素化合物 (72,636) | 製造−製造工程、製造条件 (14,091) | 添加剤の使用 (2,974) | 有機物 (141)

Fターム[4G146BC47]に分類される特許

21 - 40 / 141


【課題】触媒を作成する工程が煩雑な従来技術の欠点を解消し、結晶性のよいカーボンナノチューブを効率的に、かつ大量に製造するためのカーボンナノチューブの製造方法を提供する。
【解決手段】比較的入手が容易なカルボン酸パラジウムを担体に担持することなしに触媒として使用し、500〜1200℃の反応温度でメタンなどの気体状態の炭素含有化合物と接触させることにより、多層カーボンナノチューブを効率的に、かつ大量に製造できる。 (もっと読む)


【課題】高い合成速度でカーボンナノチューブを表面に形成でき、かつ合成されたカーボンナノチューブが剥離しにくいカーボンナノチューブ形成用基板複合体、及びその製造方法を提供すること。
【解決手段】表面にカーボンナノチューブを形成するための基板複合体であって、基板と、
前記基板の少なくとも一方の表面に配置され、アルミニウム原子とフッ素原子とを含むバッファ層と、前記バッファ層の表面に配置され、金属コアと界面活性体とから構成される触媒金属含有粒子からなる触媒層と、を有する。 (もっと読む)


【課題】一般の黒鉛材料などの他部材と共に使用しても熱膨張差等の相互作用による割れが発生しにくく、反応性ガスによって炭化物が生成されても熱応力の発生による剥離及び/又は割れの生じにくいC/C複合材を提供する。
【解決手段】炭素繊維1と炭素質マトリックス2とを含む炭素繊維強化炭素複合材であって、前記炭素繊維は前記炭素質マトリックス内で素線状態で存在する、平均繊維長が1.0mm未満の直線状繊維であり、炭素繊維強化炭素複合材の嵩密度が1.2g/cm以上であることを特徴とする炭素繊維強化炭素複合材。 (もっと読む)


【課題】長尺状のカーボンナノチューブを容易に製造することができるカーボンナノチューブの製造方法、カーボンナノチューブの製造装置を提供する。
【解決手段】カーボンナノチューブ16を長尺状に成長させるカーボンナノチューブの製造方法において、触媒14を担持した線状の支持体3を加熱するステップと、前記支持体3に炭素原料と触媒原料とを含有する原料ガスを供給するステップとを備え、前記支持体3上に前記カーボンナノチューブ16を長尺状に成長させる。 (もっと読む)


【課題】簡易な方法で炭素物質を製造する方法、および、基板の選択範囲を広げ、従来よりも耐熱性の低い基板上に直接に炭素物質膜が積層されてなる炭素物質膜積層体を提供することを目的とする。
【解決手段】1種若しくは2種以上の有機化合物を含む炭素物質生成溶液を、加熱して、溶媒を除去するとともに該炭素物質生成溶液中に含まれる有機化合物を炭化させる炭化工程を経ることによって、炭素物質を生成する。 (もっと読む)


【課題】本発明は、半導体型カーボンナノチューブの製造方法に関するものである。
【解決手段】本発明の半導体型カーボンナノチューブの生成方法は、基板に、血液を含む触媒予備体を堆積させる第一ステップと、前記触媒予備体に含まれた有機物質を除去して、血液に含まれた鉄を酸化して鉄の酸化物を形成する第二ステップと、前記鉄の酸化物を還元させて鉄ナノ粒子を形成する第三ステップと、前記鉄ナノ粒子を触媒として半導体型カーボンナノチューブを生成する第四ステップと、を含む。 (もっと読む)


【課題】高い静電容量を得ることができる新規の電気二重層キャパシタ分極性電極用炭素材料の製造方法を提供する。
【解決手段】電気二重層キャパシタ分極性電極用炭素材料の製造方法は、糖類を主成分とする炭素前駆体にリンおよび窒素のうちのいずれか一方または双方を含有する化合物を配合し、不活性雰囲気下で500〜1000℃の温度で炭化する。糖類100質量部に対してリンおよび窒素のうちのいずれか一方または双方を含有する化合物をリン基準で0.5〜3.0質量部および窒素基準で2.0〜6.0質量部の条件を満たす量配合し、糖類は、でんぷんおよびセルロースのいずれか一方または双方であり、リンおよび窒素を含有する化合物が、リン酸グアニジンである。 (もっと読む)


【課題】本発明は、配向カーボンナノチューブの物理量を制御して、容易にロープ状炭素構造物を製造することができる配向カーボンナノチューブを提供することを目的としている。
【解決手段】本発明は、基体と前記基体表面に形成された触媒粒子層から構成される配向カーボンナノチューブ製造用触媒体を用いて合成される配向カーボンナノチューブにおいて、前記配向カーボンナノチューブが多層のカーボンナノチューブからなり、前記配向カーボンナノチューブのサイズ分布及び/又は層数分布が2つ以上の分布ピークを有し、前記基体表面に成長させた前記配向カーボンナノチューブの一部を引出すことによりカーボンナノチューブからなるロープ状構造物が形成されるロープ状炭素構造物製造用配向カーボンナノチューブ、これを用いて製造されたロープ状炭素構造物及びその製造方法である (もっと読む)


【課題】重量密度(単位体積あたりの重量が小さい)が低く、優れた成形加工性を備え、比表面積が高く、且つ一本一本のCNTが規則的な方向に配向している単層CNT配向集合体、バルク状単層CNT配向集合体、粉体状単層CNT配向集合体を提供する。
【解決手段】比表面積;600〜2600m/g、蛍光X線測定で得られた炭素純度;95%以上、ラマンスペクトルのGバンドピークとDバンドピークの比G/D;1〜50、平均外径;1.5nm〜4nm、半値幅;1nm以上で平均外径の倍以下を備え、かつ配向度が所定の条件で定義されるバルク状単層カーボンナノチューブ配向集合体。 (もっと読む)


【課題】気相からの凝集物、例えば単層または多層カーボンナノチューブから繊維を製造して機械的または電子的特性を向上する。
【解決手段】1つまたは複数のガス状反応物質の流れを反応器12に通す工程と、反応器12の反応領域内で1つまたは複数のガス状反応物質を反応させて、エーロゲルを形成する工程と、該エーロゲルを凝集物4へと凝集させる工程と、該凝集物4に力を加えて、それを反応領域外に連続的に移動させながら繊維24にする工程とを含む製造方法。 (もっと読む)


【課題】多孔性樹脂構造を有するメソ多孔性炭素を環境的にも安全でかつ安価に製造する方法を提供する。
【解決手段】メソ多孔性炭素に炭化され得る多孔性樹脂が、細孔形成剤(好ましくは、100重量部の樹脂当り少なくとも120重量部のエチレングリコールの量のエチレングリコール)の存在下でフェノールホルムアルデヒドプレポリマーを架橋すること、および形成された樹脂を炭化することによって作製され得る。この樹脂は、部分的に架橋した樹脂を熱い油に注ぐことによって、改変剤を用いてかまたは用いずに、フェノールを架橋剤と縮合させることによって形成され得る。メソ多孔性炭素ビーズに炭化され得る多孔性樹脂ビーズが得られる。 (もっと読む)


【課題】生産時のハンドリングおよび実用に適した強度を有するカーボンナノチューブ撚糸およびその製造方法を提供すること。
【解決手段】カーボンナノチューブを含む撚糸であって、該カーボンナノチューブが分子間で架橋構造が形成しているカーボンナノチューブ撚糸。このカーボンナノチューブ撚糸は、カーボンナノチューブを含む撚糸に電子線を照射することをより製造することができる。 (もっと読む)


【課題】超音波噴霧法を用いて、糸条形成能を有する集合体を確実に形成できるカーボンナノチューブから成る集合体の製造方法を提供する。
【解決手段】本発明に係るカーボンナノチューブから成る集合体の製造方法は、炭素源としての炭化水素化合物と触媒含有化合物とが溶解された炭化水素溶液に超音波を照射して発生した炭化水素溶液の噴霧体を、キャリアガスに同伴して所定温度に加熱されている縦型反応器22の一端側に導入して直径の平均が30nm以下のカーボンナノチューブを生成し、前記カーボンナノチューブを、縦型反応器22の一端側から他端側の方向に流れるキャリアガスに同伴して移動させ、集合させることにより糸条形成能を有する集合体40に成長させることを特徴とする。 (もっと読む)


【課題】この発明は、LB法を用いた、カーボンナノチューブの本数密度を所望値に制御することのできるカーボンナノチューブの製造方法を提供する。
【解決手段】金属微粒子24の表面にステアリン酸が表面修飾されたものを、LB膜物質22として準備する。金属微粒子24は、直径5nm程度の鉄(Fe)ナノコロイドを用いる。トラフ12の水面上にLB膜物質22を滴下し、図2に示すように、基板30のよう面にLB膜物質22を転写する。LB法を用いた成膜の工程を行った後、基板30をCVD装置50内に配置する。電気炉52により焼成を行い、ステアリン酸を除去する。連続してカーボンナノチューブの原料ガスをCVD装置50内に流し、カーボンナノチューブを成長させる。 (もっと読む)


【課題】従来技術と比較して、室温で十分に高いキャリア濃度を有するダイヤモンド半導体及び作製方法を提供すること。
【解決手段】ダイヤモンド基板11(図5(a))上にマイクロ波プラズマCVD装置を用い、メタンを反応ガスとし、基板温度700℃でダイヤモンド薄膜12を1ミクロン積層する(図5(b))。ダイヤモンド薄膜12にイオン注入装置を用い、不純物1(VI族又はII族元素)を打ち込む(図5(c))。その後、不純物2(III族又はV族元素)を打ち込んだが(図5(d))、注入条件は、打ち込んだ不純物がそれぞれ表面から0.5ミクロンの厚さの範囲内で、1×1017cm-3となるようにシミュレーションにより決定した。その後、2種類のイオンが注入されたダイヤモンド薄膜13をアニールすることにより(図5(e))、イオン注入された不純物の活性化を行い、ダイヤモンド半導体薄膜15を得た(図5(f))。 (もっと読む)


【課題】グラフェンを高精度でパターニングすることができ、これにより、グラフェンを用いた電子デバイス要素及び電子デバイスの精細加工が可能であり、製造コストを格段に低減することが可能なグラフェン構造体及びその製造方法等を提供する。
【解決手段】基板上にレジスト膜を精度よくパターニングし、そのレジスト膜の開口内に親水化膜を形成した後、GOが親水性を有することを利用して、親水化膜の部分にのみ、GOを選択的に化学的に結合させて固定化し、更にそのGOを還元して親水化膜の部分にのみグラフェンが選択的に固定化されたグラフェン構造体を得る。このように、グラフェン構造体は、基板上にグラフェンが設けられてなり、且つ、基板における親水処理の部位とグラフェン、及び/又は、基板における疎水処理の部位以外の部位とグラフェンとの間に、親水処理による結合が形成されたものである。 (もっと読む)


本発明の特定の実施形態例は、透明な導電性コーティング(TCC)としてグラフェンを使用することに関する。被覆しようとする表面を有する基材を供給する。自己組織化単分子膜(SAM)テンプレートを、被覆しようとする表面に配置する。前駆体分子を含む前駆体を供給する。ここで、前駆体分子は、多環式芳香族炭化水素(PAH)及びディスコチック分子である。前駆体を溶解して溶液とする。この溶液を、上にSAMテンプレートを配置した基材に適用する。前駆体分子をSAMテンプレートに光化学的に付着させる。基材を少なくとも450℃まで加熱すると、グラフェン含有膜が形成される。有利なことに、グラフェン含有膜は基材に直接、例えばリフトオフ法を必要とせずに、形成することができる。 (もっと読む)


本発明は、グラフェン改質リン酸鉄リチウム正極活物質、及び該正極活物質を使用したリチウムイオン二次電池に関するものである。前記正極活物質は、グラフェンまたは酸化グラフェン及びリン酸鉄リチウムを水に分散し、攪拌と超音波で均一に混合し、乾燥させて、グラフェンや酸化グラフェン複合リン酸鉄リチウム材料を得た後、高温アニールにより最終的にグラフェン改質リン酸鉄リチウム正極活物質を得る。前記リチウムイオン二次電池は従来の炭素材コーティング及び導電性高分子ドーピングなどによるリン酸鉄リチウム材に比べて、高容量、優れた充放電サイクル性能、長寿命及び高サイクル安定性の特性を有する。
(もっと読む)


本発明は、カーボンナノチューブを基板上に合成する方法であって、炭素源、酸化物化合物の前駆体源、および任意に触媒源を含む流れを前記基板上に生じさせることにより化学蒸着によって前記カーボンナノチューブを前記基板上に成長させる工程を含む方法に関する。 (もっと読む)


本発明は、アルカリ金属塩を用いるグラフェン溶液の製造方法、グラフェン溶液、グラフェンアルカリ金属塩の製造方法、グラフェンアルカリ金属塩、および、グラフェン複合材料およびグラフェン複合材料の製造方法に関する。
(もっと読む)


21 - 40 / 141