説明

Fターム[5H030AS08]の内容

二次電池の保守(充放電、状態検知) (54,401) | 蓄電池の取付対象及び機器 (12,336) | 車両、自動車、電気車 (4,869)

Fターム[5H030AS08]に分類される特許

101 - 120 / 4,869


【課題】充電忘れを防止する警報を適切なタイミングで発することが可能な、電動車両の充電システムを提供することを目的とする。
【解決手段】電気自動車100の充電システムは、バッテリー101の充電に用いる充電ケーブルが電気自動車100に接続されたことを検知する充電ケーブル接続検知装置104と、無線通信機能を有する車両用キー200が電気自動車100から一定距離以上離れたか否かを判定する離反判定部106aとを備える。充電忘れ防止装置106は、充電ケーブルが電気自動車100に接続される前に、車両用キー200が電気自動車100から一定距離以上離れた場合に、照明107およびスピーカ108を用いて、ユーザーに電気自動車100の充電を促すための警報を行う。 (もっと読む)


【課題】電池セルが増加しても部品点数や作業工数の増加を極力抑えることができ、しかも、装置の小型化、軽量化を図ることができる電源装置を提供する。
【解決手段】積層された複数の電池セル2,3を有し、隣り合う電池セル2,3の互いの電極2b,3b同士が対向して配置された電池集合体1と、電池集合体1の電極2b,3bが突出された側に配置され、突出された電極2b,3bを被う電池連結ブロック体10とを備え、電池連結ブロック体10は、対向配置された電極2b,3bが共に接続される電極用端子16を有すると共に電圧検出用の回路パターン部17が設けられた基板12を有し、電極用端子16と回路パターン部17が電線W1を介して接続された。 (もっと読む)


【課題】電池劣化を抑制した蓄電装置の充放電制御を実現する。
【解決手段】ハイブリッド車両に搭載される蓄電装置の制御装置であって、蓄電装置の抵抗上昇に基づく劣化状態を検出する検出部と、蓄電装置の充放電制御を行うコントローラ10と、を有する。コントローラ10は、上昇した抵抗が時間経過に応じて低下する低下率と蓄電装置のSOCとの関係を予め規定した関係データに基づいて目標SOCを設定し、蓄電装置のSOCを監視して設定された目標SOCとなるように充放電制御を行う。コントローラ10は、検出部によって検出される上昇した抵抗が低下することに伴って変化する劣化状態に応じて、関係データに基づく目標SOCを変更する。 (もっと読む)


【課題】車両に搭載された電源の充電状態を精度高く監視することができる電源監視装置を提供する。
【解決手段】電源電流制御ユニット102により回転電機3の界磁電流をPWM制御する界磁電流PWM制御信号PWを制御して、電源装置2に流れる電源電流値を零若しくは零近傍の値となるように無通電制御し、所定期間内に於いて電源装置2の電源端子間電圧値Vの変動が所定の範囲内にあることを電源電圧安定判定ユニット104が判定したとき、電源充電状態推定ユニット101により電源装置2の電圧値Vに基づいて電源装置2の充電状態を推定する。 (もっと読む)


【課題】バッテリの劣化の進行を抑制するためにバッテリの充電がより適正に行なわれるようにする。
【解決手段】車両のシステムオフがなされる毎に放置時間Tが閾値Tref以上となる毎に放置SOC(n)がRAM76の放置時間記憶領域に記憶し、所定のタイミングでRAM76の放置時間記憶領域に記憶した全ての放置SOC(n)の所定範囲毎の出現頻度(%)を計算し(S210)、放置SOC(n)の出現頻度(%)のグラフを作成して表示装置94に表示する(S220,S230)。これにより、ユーザやメンテナンスを行なう者に、ユーザによる高圧バッテリの放置時間Tが閾値Tref以上の放置における放置SOC(n)の出現頻度を知らせることができ、高圧バッテリを蓄電割合SOCが高い状態での放置するのを控えるよう促すことができる。 (もっと読む)


【課題】蓄電池システムにおける性能劣化を抑制する。
【解決手段】劣化診断対象セルリスト作成部は、複数のセルの中から診断対象セルを選択し、前記診断対象セルのリストを作成する。セル劣化診断部は、前記リストに含まれる診断対象セルの劣化診断を行うことにより、または外部の劣化診断装置に前記診断対象セルの劣化診断を要求することにより、診断対象セルの劣化度合いを取得する。温度分布推定部は、前記複数のセルのうち前記リストに含まれる診断対象セル以外の非対象セルの劣化度合いを、前記非対象セルおよび前記診断対象セル間の距離に基づいて推定し、前記診断対象セルおよび前記非対象セルの劣化度合いに基づき、前記複数のセル全体の温度分布を取得する。前記劣化診断対象セルリスト更新部は、前記温度分布に基づき、前記診断対象セルのリストを更新する。 (もっと読む)


【課題】 非常時においても車両によって移動可能な状況を確保しつつ、電気自動車から住宅へ電力を供給できる電力管理装置を提供する。
【解決手段】 電力管理装置は、電気機器22を含む住宅システム2と電気自動車1との間で授受される電力を管理するため、住宅の住人が利用可能な車両を検知する車両検知部26を備え、制御部24は、車両検知部26により検知された車両の有無に応じて、電気自動車1から住宅システム2に供給する電力を決定する。 (もっと読む)


【課題】ユーザによる店舗の利用を効果的に促進する充電システムを提供する。
【解決手段】充電システム1は、電動車両Eに備えられるバッテリに電力を供給して充電する充電電力供給部11と、充電システム1が備えられる店舗で販売される商品の管理を行う商品販売管理部17と、電動車両Eのユーザに請求する充電料金を算出する制御部15と、を備える。制御部15は、電動車両Eのユーザが店舗で購入した商品の金額に応じて、充電料金を算出する。特に制御部15は、ユーザが購入した商品の金額が高いほど、充電料金が安くなるように算出する。 (もっと読む)


【課題】複数の蓄電部と複数の蓄電部の間に設けられた直流変換部とを備えた車両用電源装置であって、システムトータルコストを低減することができる車両用電源装置を得る。
【解決手段】第1蓄電部4と、第1蓄電部4よりも内部抵抗および容量が小さい第2蓄電部5と、第1蓄電部4と第2蓄電部5との間に設けられ、入力された直流電圧を大きさの異なる直流電圧に変換して出力する直流変換部7と、直流変換部7が出力する直流電圧の目標値を設定するとともに、設定した目標値と出力する直流電圧とが一致するように、直流変換部の動作を制御する制御部8と、第2蓄電部5と車両駆動用の電動機2との間に設けられ、入力された直流電圧を交流電圧に変換して電動機2に供給する電力変換部3と、を備え、直流変換部7は、第1蓄電部4が接続されている方向から、第2蓄電部5が接続されている方向への一方向にのみ、電圧を変換するものである。 (もっと読む)


【課題】電池の満充電容量を精度よく推定する。
【解決手段】本発明は、蓄電装置の満充電容量推定方法であり、充電前後のSOC差と充電中の充電電流積算値とに基づいて算出される満充電容量を充電毎に学習して学習満充電容量を算出するにあたり、前回算出された学習満充電容量に、充電後に取得される算出された満充電容量を反映して新たな学習満充電容量を算出する。そして、充電中の充電電流値及び充電後の蓄電装置の温度の少なくとも一方に基づいて、新たな学習満充電容量に反映される算出された満充電容量の反映量を変更する。学習満充電容量に反映される実測された満充電容量の反映量が、電流値に依存する電流積算値の精度誤差及び温度に依存するSOCの精度誤差の少なくとも一方の影響を考慮して調整されるので、満充電容量の学習精度を向上させることができる。 (もっと読む)


【課題】必要な全体の設備やシステム管理に要する総合的なコストを削減する。
【解決手段】駐車スペースに駐車する電気自動車を充電する電気自動車の充電システムは、電気自動車の充電に用いられる充電レセプタクル205と、前記充電レセプタクルの位置に装着された充電認証を行うためのカードリーダー211と、前記カードリーダーで読み取られたID情報が充電を許可してよいID情報であるときに前記充電レセプタクルに接続された充電ケーブル302を介して行われる電気自動車の充電を制御する充電制御部200と、を備える。 (もっと読む)


【課題】充電状態と放電状態を確実に切り換えること。
【解決手段】充電側電磁接触器MC1を接点S1〜S4で構成するとともに、放電側電磁接触器MC2を接点S5〜S8で構成する。接点S1,S2は、充電用経路K1を通電状態と非通電状態に切り換えるとともに、接点S3,S4は、接点S1,S2とは逆の状態を取り得る。接点S5,S6は、放電用経路K2を通電状態と非通電状態に切り換えるとともに、接点S7,S8は、接点S5,S6とは逆の状態を取り得る。充電側コントローラ14は、接点S1,S2を通電状態に切り換えるための電気信号を、放電側電磁接触器MC2の接点S7を介して充電側電磁接触器MC1に入力する。放電側コントローラ15は、接点S5,S6を通電状態に切り換えるための電気信号を、充電側電磁接触器MC1の接点S4を介して放電側電磁接触器MC2に入力する。 (もっと読む)


【課題】二次電池の状態を正確に検出すること。
【解決手段】車両に搭載された二次電池10の状態を検出する二次電池状態検出システムにおいて、二次電池に充電電流または放電電流を通じる通電手段(通電部21)と、通電手段によって二次電池に電流が通じている際の電圧を測定する測定手段(検出部22)と、を有し、通電手段と二次電池を接続する第1接続線(放電用配線25)と、測定手段と二次電池を接続する第2接続線(検出用配線26)とが共通に有するインピーダンスとしての共通インピーダンスが最小になるように第1接続線と第2接続線とが結線されていることを特徴とする。 (もっと読む)


【課題】電圧検出器等の新たな構成を追加することなく、中間タップ付きのバッテリーを過不足なく充電することができる充電装置を提供する。
【解決手段】全電圧と中間電圧とを出力可能なバッテリー3を充電する充電装置1であって、バッテリー3に直流電圧を出力する出力回路4と、出力回路4の出力状態をオン状態とオフ状態とに制御する制御回路5とを備え、制御回路5は、全電圧検出手段10と、充電を開始してから全電圧検出手段10で検出された電圧値が設定電圧値に達するまでの第1充電時間を測定する第1充電時間測定手段11と、設定電圧値に達してから充電が完了するまでの第2充電時間を算出する第2充電時間算出手段12とを有し、設定電圧値は、中間電圧が転極点をむかえるときの全電圧の電圧値に設定されており、第2充電時間は、全電圧の電圧値および充電時間の相互関係を示す充電特性と、第1充電時間とに基づいて算出されることを特徴とする。 (もっと読む)


【課題】 二次電池の内部温度を正確に推定することのできる二次電池の温度推定方法,および,二次電池の性能を十分に発揮することのできる二次電池の制御方法を提供すること。
【解決手段】 本発明の二次電池の温度推定方法は,交流インピーダンス法を用いて取得した,内部抵抗と継続時間とSOCと温度との関係である内部抵抗マップを用いる。そして,二次電池の内部温度である蓄電部の温度を,まず,内部抵抗マップに基づいて蓄電部の内部抵抗を求め,さらに,求められた内部抵抗を用いて蓄電部の発熱量を算出し,算出された発熱量を用いることにより推定する。 (もっと読む)


【課題】 電気自動車に搭載された蓄電池の劣化を抑制する電力管理装置を提供する。
【解決手段】 電力供給システムは、負荷機器22を含む住宅システム2と電気自動車1との間で授受される電力を管理するために、電気自動車1に搭載されたEV蓄電池11の充放電履歴情報を蓄電池情報記憶部12によって取得し、通信部13及び通信部25を介して、電気自動車1の制御部24に供給する。制御部24は、取得された充放電履歴情報に基づいて、住宅との間のEV蓄電池11の充放電を制御する。 (もっと読む)


【課題】「液枯れ現象」による電池容量の劣化を確実に低減しつつ、効率的に非水電解液二次電池を制御することが可能な非水電解液二次電池システムを提供する。
【解決手段】積層された単電池21・21・・・と、単電池21・21・・・を積層方向に挟持し、積層方向に向かって増圧・減圧可能に拘束圧力を付加する圧力付加手段3と、単電池21・21・・・と圧力付加手段3の運転を制御する制御装置4と、を備える非水電解液二次電池システム1であって、制御装置4には単電池21の「液枯れ状態」を示す理論抵抗値Rが記憶され、また、単電池21の電流値・電圧値を測定する電流センサー41と電圧センサー42が電気的に接続され、制御装置4は電流センサー41による電流値Iaと、電圧センサー42による電圧値Vaとに基づいて抵抗値Raを算出し、抵抗値Raが理論抵抗値R以上となる場合、圧力付加手段3を減圧させる。 (もっと読む)


【課題】複数の電池セルを接続して構成される組電池において、内部抵抗にばらつきがあっても各電池セルが到達する終了電圧を揃えることのできる均等化制御を実現する。
【解決手段】組電池101は、複数の電池セル102を例えば直列に接続して構成される。セルバランス部103は、組電池101に対して複数の電池セル102の電圧を均等化させる。電池セル監視部104は、各電池セル102の少なくとも電圧および電流を監視する。補正電圧算出部105は、均等化する電池セル102の内部抵抗に対応する補正電圧を算出する。セルバランス制御部106は、電池セル102に対応する均等化制御の終了電圧を更に補正し、電池セル監視部104を介して電池セル102の電圧を監視しながら補正終了電圧が制御終了の目標値となる様、セルバランス部103による電圧の均等化制御を実行させる。 (もっと読む)


【課題】バッテリに充電した電気エネルギーによって走行する車両のドライバーに対して、エネルギー消費効率の高い運転を心がけるインセンティブを与えるような充電料金を算出することができる、充電システムを提供する。
【解決手段】充電システム100の充電装置10は、或る期間における電気自動車30の走行距離ΔSを算出する走行距離算出手段13と、前記期間における電気自動車30の消費電力量ΔWを算出する消費電力量算出手段14と、走行距離ΔSおよび消費電力量ΔWに基づいて、前記期間における電気自動車の電力量消費率Dを算出する電力量消費率算出手段15と、バッテリ31への充電電力量Wchargeを算出する充電電力量算出手段17と、電力量消費率Dと充電電力量Wchargeとに基づいて、充電料金Mを算出する充電料金算出手段18とを備える。 (もっと読む)


【課題】コントローラとの電気的接続を有するバッテリに対する充電や、バッテリからの放電を行いながら、コントローラと電気的に接続されたバッテリの数を変更する。
【解決手段】それぞれがバッテリを備える複数の充電装置のうちの少なくとも1つに対して充電を開始させる時に、複数の充電装置のうちの少なくとも1つの着脱が検知されていた場合には、複数の充電装置の全てに対する充電を停止させる。 (もっと読む)


101 - 120 / 4,869