説明

Fターム[5J055FX19]の内容

電子的スイッチ (55,123) | 制御、帰還信号の発生 (8,841) | 制御、帰還信号の特徴 (2,064) | 制御、帰還信号はアナログ値であるもの (350)

Fターム[5J055FX19]に分類される特許

101 - 120 / 350


【解決手段】多重入出力(I/O)システムは、選択された入力チャネルにおけるリーク電流を検出する。当該システムは、複数の入力チャネルのうちの1つから選択された出力を供給するために接続されたリーク電流検出マルチプレクサを含んでいる。また、リーク検出マルチプレクサは、選択された入力チャネルに関し測定されたリーク電流を当該出力の一部として供給する。検出されたリーク電流に基づき、検出されたリーク電流がマルチプレクサの出力のインテグリティを喪失させたか否かに関する測定を行うことが可能である。更に、当該検出されたリーク電流は、マルチプレクサによって供給される出力を補正するために使用され、選択されたチャネルにおけるリーク電流の存在を補償することが可能である。 (もっと読む)


【課題】 受信機が受信するノイズを低減することができるスイッチング回路を提供すること。
【解決手段】 パワートランジスタM1を駆動して負荷5を作動させる駆動電圧波形を生成するスイッチング回路1において、ラジオ受信機7が受信している送信局の周波数を検出する受信周波数検出部33と、負荷5を制御する制御パルスを生成する制御パルス生成部と、駆動電圧の変位により生じる高調波のスペクトル包絡線の谷部が、ラジオ受信機7が受信している送信局の周波数を含むように駆動電圧波形の立ち上がり部分と立ち下がり部分の波形を生成する最適波形記憶部32と、最適波形記憶部32が生成した駆動電圧波形の立ち上がり部分と立ち下がり部分の波形を、制御パルスに適用して駆動波形を生成する波形生成部31とを備えた。 (もっと読む)


【課題】電源回路等を追加することなく、第1の電源電圧が低下してもダイナミックVTによる高速化の効果の低減を抑制できる半導体装置を提供する。
【解決手段】第1の回路は、第1の電源電圧を供給する第1の電源ラインと第1の電源電圧よりも低い第2の電源電圧を供給する第2の電源ライン間に接続された、トランジスタを備える。制御回路は、第1の電源ラインと第2の電源ライン間に接続され、上記トランジスタのバックゲートに第1の電源電圧と第2の電源電圧の電位差よりも振幅が大きい制御信号を供給する。 (もっと読む)


【課題】本発明は、中央処理装置の低消費電力モード時に外部から供給されるアナログ信号の正確なAD変換を行うことができる半導体集積回路を提供することを目的とする。
【解決手段】割込み信号のエッジ検出を行ってエッジ検出信号を生成するエッジ検出手段11と、外部から供給されるアナログ信号をエッジ検出信号により保持し、中央処理装置13からの制御により、保持しているアナログ信号をAD変換して中央処理装置に供給するAD変換手段12とを有し、割込み信号又はエッジ検出信号によって中央処理装置が低消費電力モードからクロックを高速とする通常モードとなった後にAD変換手段12に保持しているアナログ信号をAD変換したデジタルデータを中央処理装置13に取り込む。 (もっと読む)


【課題】入力端子にノイズが発生する。
【解決手段】第1の電流経路は、第1の電源端子と第1の出力端子間に接続され、制御端子に差動入力信号の一方が入力される第1のトランジスタと、第2の電源端子と第1の出力端子との間に接続され、制御端子に差動入力信号の他方が入力される第2のトランジスタと、第1の電源端子と第1のトランジスタとの間に接続される第1のスイッチ回路とを有し、第2の電流経路は、第2の電源端子と第2の出力端子との間に接続され、制御端子に差動入力信号の一方が入力される第3のトランジスタと、第1の電源端子と第2の出力端子との間に接続され、制御端子に差動入力信号の他方が入力される第4のトランジスタと、第2の電源端子と第3のトランジスタとの間に接続される第2のスイッチ回路とを有し、第1、第2のスイッチ回路は、制御信号により導通状態が制御される差動増幅器。 (もっと読む)


本発明は、十分に大きい電圧レベルを検出するため、また、十分な出力を供給するためのトリガ回路に関する。更に本発明は、従来の解決手段に比べて、同じ出力電圧で効果的により多くの出力を供給する整流器に関する。トリガ回路及び整流回路は、特に圧電式のマイクロジェネレータを有するエネルギ自立型のマイクロシステムにおいて使用することができる。
(もっと読む)


【課題】センス電流にスイッチングノイズが乗った場合などにおいても、過電流や短絡を誤検知することのない高信頼な短絡保護を実現する。
【解決手段】半導体素子制御装置は、IGBT330のスイッチング動作を制御するための駆動信号をIGBT330のゲート端子に出力する駆動部805と、ゲート端子の電圧に基づいてIGBT330の短絡を検知し、短絡検知信号を出力する短絡検知部806と、短絡検知部806から出力された短絡検知信号に基づいてIGBT330に流れる電流を遮断する駆動遮断部804とを備える。 (もっと読む)


可変制御電圧を用いた、改善された信頼性及び性能を有するスイッチが説明される。典型的な設計において、装置は、スイッチ、ピーク電圧検出器、及び制御電圧生成器を含む。スイッチは、スタックされたトランジスタを用いて実装されうる。ピーク電圧検出器は、スイッチへ提供された入力信号のピーク電圧を検出する。典型的な設計において、制御電圧生成器は、検出されたピーク電圧に基づいて、スイッチをオフにするための可変制御電圧を生成する。別の典型的な設計において、制御電圧生成器は、検出されたピーク電圧に基づいて、スイッチをオンにするための可変制御電圧を生成する。また別の典型的な設計において、制御電圧生成器は、ピーク電圧が高閾値を上回った場合、スイッチをオンにして入力信号を減衰させるための制御電圧を生成する。
(もっと読む)


第1端子、第2端子、第1端子と第2端子の間に結合される第1電子制御スイッチ、及び第1端子の電位が第2端子の電位より第一値だけ高い場合に第1電子制御スイッチを閉じるように配置された第1電荷ポンプとから構成される低電圧降下単方向電子バルブ。第1電荷ポンプは第2端子電位より第一値だけ高い第1端子電位を継続して維持するように第1電子制御スイッチと閉ループに配置される。 (もっと読む)


【課題】出力負荷を駆動する電圧帰還型D級増幅回路の周波数特性を改善する。
【解決手段】入力信号のPWM変調を行なう比較回路(26A,26B)に、PWMキャリアとなる三角波(TOSC)を与える三角波信号発生器(30)に対し、三角波の勾配を補正する三角波補正回路(32)を設ける。三角波(TOSC)のスルーレート(勾配)を出力回路駆動用指令値(COMPOUTP,COMPOUTM)のデューティが50%近傍となる領域において小さくする。 (もっと読む)


デバイスのダメージを引き起こしうる短絡条件における過度の出力電流からスイッチング出力段を保護するための、スイッチ型出力段における短絡保護が説明される。この目的を達成するための設計技術は、ドレイン電圧を実質的に等しくするための回路と組み合わせて、スケールされたトランジスタをスイッチングトランジスタと並列に置くことによって、それらスイッチングトランジスタにおける電流を測定することを含む。短絡保護のための様々な技術は、(a)トランジスタと演算増幅器とを組み合わせて使用すること、(b)演算増幅器の代わりに単一のトランジスタを使用すること、(c)過電流検出信号を生成するための回路を使用すること、(d)出力電流を低減するために、ドライバに過電流検出信号を提供すること、(e)出力電流をフィードバック調整するためにインバータを使用すること、(f)通常動作中に電流調整器をバイパスするためにスイッチを使用すること、および(g)過電流状態において、このスイッチを自動的に開くこと、を具備する。
(もっと読む)


【課題】最大出力電圧の低下、チップ面積の増大、周波数特性の劣化を解決した過電流保護回路を有する出力回路を提供する。
【解決手段】入力トランジスタQ1と、入力トランジスタQ1のコレクタ電圧に応じて出力端子2に出力電流を供給するエミッタホロワの出力トランジスタQ3とを有する出力回路において、出力トランジスタQ3のコレクタに接続した過電流検出抵抗R2と、過電流検出抵抗R2に発生する電圧が所定値を超えたとき導通する過電流保護トランジスタQ4とで過電流保護回路を構成し、過電流保護トランジスタQ4が導通することにより、入力トランジスタQ1のエミッタと出力トランジスタQ3のコレクタとの間を接続するようにした。 (もっと読む)


【課題】ピークホールド回路において、ドループを抑制してピーク電圧を長時間保持できるドループ補正ピークホールド回路を提供すること。
【解決手段】ピークホールド回路のホールドコンデンサC1は、一端をダイオードD1のカソードに接続し、他端をドループ補正回路20に接続してある。ドループ補正回路20は、ホールドコンデンサC2の保持電圧を、増幅回路A3において極性を反転してホールドコンデンサC1に印加する。即ちドループ補正回路20は、ホールドコンデンサC1にその保持電圧と逆極性のドループ補正電圧を印加する。ドループ補正電圧の印加によりホールドコンデンサC1のドループを長時間抑制できる。 (もっと読む)


本発明は、電子スイッチに電気的に接続される制御回路に基づいて、様々なタイプの負荷を駆動することができ、広く使用される電子スイッチに関する。制御回路は、本スイッチの少なくとも導通の時点で、制御回路に電力を供給するように設計された電圧レギュレータブロックに接続される。従って、少なくとも一つの交流電圧源(4)と、少なくとも一つの電子スイッチ(1)と、少なくとも一つの負荷(5)と、少なくとも一つの制御回路(3)とを備え、交流電圧源(4)は、第1の電力端子(20)を介して電子スイッチ(1)の第1の導通端子(25)と電気的に接続され、電子スイッチ(1)の第2の導通端子(35)は、第1の負荷端子(40)を介して負荷(5)と接続され、負荷(5)は、第2の負荷端子(80)を介して第2の電力端子(30)と接続され、制御回路(3)は、第1の電位端子(101)、第2の電位端子(102)及び第3の電位端子(103)を備え、制御回路(3)は、トリガー端子(100)を介して電子スイッチ(1)に命令を出すように配置され、制御回路(3)は、電圧レギュレータブロック(200)と電気的に接続され、電圧レギュレータブロック(200)は、第1の電気接続端子(104)及び第3の電気接続端子(106)と、第1の導通端子(25)及び第2の導通端子(35)とをそれぞれ介して電子スイッチ(1)と電気的に接続され、電圧レギュレータブロック(200)は、電子スイッチ(1)の少なくとも導通の時点で制御回路(3)を稼動するように、最小電圧(Vmin)を供給するように配置される、電子スイッチ制御システム(10)が記載される。 (もっと読む)


【課題】電磁波による誤動作を低減することのできる入力回路および半導体集積回路の提供を図る。
【解決手段】入力端子2に供給される入力信号を受け取る入力回路10aであって、一端が前記入力端子に接続された容量42と、前記入力信号を、当該入力信号と同じ正論理の信号に変換し、前記容量の他端に供給して駆動する容量駆動回路51,52,41と、を有するように構成する。 (もっと読む)


【課題】より適切にリセット信号を出力することが可能な半導体装置を提供する。
【解決手段】半導体装置は、信号端子の電圧に応じてリセット信号が出力される出力端子と、信号端子と電源との間に接続され、接地にゲートが接続された第1のMOSトランジスタと、信号端子と接地との間に接続された第1の容量素子と、信号端子と接地との間に接続され、第1の端子にゲートが接続された第2のMOSトランジスタと、電源と第1の端子との間に接続され、接地にゲートが接続された第3のMOSトランジスタと、第1の端子と第2の端子との間に接続され、接地にゲートが接続された第4のMOSトランジスタと、電源と第2の端子との間に接続された第2の容量素子と、第2の端子と接地との間に接続され、電源にゲートが接続された第5のMOSトランジスタと、を備える。 (もっと読む)


【課題】シリーズFETおよびシャントFETとして4端子NMOSFETを用いるSPSTスイッチ回路では、シリーズFETがオン状態で、シャントFETがオフ状態のときに、SPSTスイッチ回路はオン状態になる。FETのバックゲートには寄生ダイオードが存在し、入力交流信号電圧が所定の閾値を超えると、寄生ダイオードがオン状態になる。その結果、SPSTスイッチ回路はスイッチ・デバイスとしての線形動作を維持できなくなり、挿入損失特性やゆがみ特性が悪化する場合がある。
【解決手段】FETのバックゲートに、バイアス電圧を印加するためのバイアス電源を設ける。このバイアス電源として、DC−DC変換回路を用いることで、SPSTスイッチ回路をシリコン半導体チップ化することが容易になる。 (もっと読む)


【課題】切替え時のノイズを低減したアナログスイッチ回路を提供する。
【解決手段】入力信号をn個(nは、1以上)の出力信号としてそれぞれ出力するn個のスイッチ素子と、前記n個のスイッチ素子を制御するスイッチ制御回路と、前記入力信号の負荷となるインピーダンス素子と、前記インピーダンス素子を制御するインピーダンス制御回路と、を備え、前記スイッチ制御回路は、前記n個のスイッチ素子のすべてがオフ、またはいずれか1つがオンとなるように制御し、前記インピーダンス制御回路は、前記n個のスイッチ素子のいずれか1つがオンのときは、前記インピーダンス素子を最大のインピーダンスに制御し、前記n個のスイッチ素子がすべてオフのときは、前記インピーダンス素子を前記最大のインピーダンスよりも小さい第1のインピーダンスに制御する、ことを特徴とするアナログスイッチ回路が提供される。 (もっと読む)


【課題】差動アンプ回路の出力信号の出力をより正確に制御することが可能な半導体集積回路を提供する。
【解決手段】半導体集積回路は、第4のMOSトランジスタと第5のMOSトランジスタとの間の接点の第1の電圧に応じた信号とイネーブル信号とが入力され、イネーブル信号が第1のレベルであり且つ第1の電圧が規定電圧以上の場合に差動アンプ回路の出力信号を出力端子に出力するための第1の信号を出力し、イネーブル信号が第2のレベルまたは第1の電圧が規定電圧未満の場合に第2の信号を出力する演算回路と、差動アンプ回路の出力信号と演算回路が出力した信号とが入力され、第1の信号が入力された場合には、出力信号を出力端子に出力し、第2の信号が入力された場合には、出力端子へ或る論理に固定した信号を出力する出力バッファ回路と、を備える。 (もっと読む)


【課題】低損失かつ高精度の電流検出手段を有するレノイド電流制御回路を提供することにある。
【解決手段】
直流電源1に対して直列接続されたハイサイドMOSFET4とローサイドMOSFET5との接続点からソレノイド6に電流を供給する。制御回路3は、ハイサイドMOSFET及びローサイドMOSFETのオンオフを制御する。センスMOSFET7とセンス抵抗8との直列回路が、ローサイドMOSFET5と並列に接続される。誤差増幅器9は、センス抵抗8の両端の電圧を増幅する。制御回路2の電流算出部2A,2Bは、誤差増幅器の出力値を用いて、ローサイドMOSFETがオフとなる期間の電流を算出する。 (もっと読む)


101 - 120 / 350