説明

振動波モータ

【課題】摩擦接触面の磨耗を少なくし、駆動性能を安定化し、異音の発生が無く、長寿命化を図ることができる振動波モータを提供する。
【解決手段】圧電体11の励振により振動を発生する弾性体12と、弾性体12に加圧接触し、その振動により駆動される移動体13とを備える振動波モータ10において、弾性体12と移動体13との摩擦接触面を含む部分の少なくとも一方は、無電解Ni−P/PTFE複合メッキ皮膜層17であり、他方は、アルマイト皮膜層18であり、無電解Ni−P/PTFE複合メッキ皮膜層17及びアルマイト皮膜層18は、ともにビッカース硬度が250以上であり、かつ、そのビッカース硬度差が100以下であるものとする。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、電気機械変換素子を用いて振動子に振動波を発生させ、この振動波により、相対運動部材を摩擦駆動させる振動波モータに関し、特に、振動子と相対運動部材との摩擦接触面を改良した振動波モータに関するものである。
【背景技術】
【0002】
従来から、電気機械変換素子を用いて振動子に振動波を発生させ、この振動波により、相対運動部材を駆動させる振動波モータが知られている。この種の振動波モータは、振動子と相対運動部材とは摩擦接触されており、振動子に発生した振動波、例えば、超音波振動は、相対運動部材に伝達され、相対運動部材が摩擦駆動される。従って、振動子は、与えられた超音波振動を効率よく相対運動部材に伝える必要があるため、高弾性材料、例えば、鉄系やステンレス系の金属材料が用いられている。
【0003】
このような従来の振動波モータは、長時間にわたって摩擦駆動されると、振動子と相対運動部材との摩擦接触面が劣化し、磨耗するようになる。これにより、振動波モータは、摩擦接触面に磨耗粉が発生し、駆動性能が不安定になり、最終的には、駆動できなくなる可能性がある。そのため、従来の振動波モータは、長時間の連続耐久試験において、安定した駆動を続けることが難しいという問題があった。
この摩擦接触面は、潤滑油等を用いることにより、磨耗を低減することは可能であるが、モータのトルク(摩擦係数×加圧力に比例)が小さくなるので、非流体力学的な潤滑、いわゆる境界潤滑が主とならざるを得ない。
【0004】
摩擦接触面の磨耗を低減するため、例えば、特許文献1では、摩擦接触面の一方を硬質アルマイトとし、他方を炭化ケイ素、炭化ホウ素、ホウ素チタニウム、チッ化ホウ素の少なくとも1つを含む無電解ニッケル合金とする手法が開示されている。また、特許文献2では、振動体の摩擦接触面に、ビッカース硬度が400以上であり、焼入れ・焼き戻し処理を施したステンレス(SUS420 J2)を用いる手法が開示されている。
しかし、いずれの手法も、磨耗は低減されるが、摩擦駆動時に不快な異音が発生するという問題があった。また、特許文献2に開示された手法は、加工工程が増えるため生産コストがかかるという問題があった。
【特許文献1】特許2578903号
【特許文献2】特開平3−36970
【発明の開示】
【発明が解決しようとする課題】
【0005】
摩擦駆動時に発生する異音を低減するために、摩擦接触面のいずれか一方に、摩擦係数が小さく、優れた自己潤滑性を有するフッ素樹脂を添加することが考えられる。
例えば、摩擦駆動面の一方に、フッ素樹脂とニッケル−リン(Ni−P)とを複合メッキ化して用いることにより、異音を低減できる。しかし、フッ素樹脂の添加量等によっては、相手側の摩擦接触面からの攻撃を受けてフッ素樹脂がNi−Pメッキから脱落したり、フッ素樹脂が抜け出た孔によるμm〜サブμmオーダーの凹凸が刃のような働きをして相手側の摩擦接触面を攻撃したり、フッ素樹脂が抜け出ることによりメッキ自身の破断強度が小さくなったりするため、異音を低減できても磨耗量が大きくなってしまう。
従って、磨耗と異音との双方を同時に低減することは困難であった。
【0006】
本発明の課題は、異音の発生が無く、摩擦接触面の磨耗を少なくして駆動性能を安定化し、長寿命化を図ることができる振動波モータを提供することである。
【課題を解決するための手段】
【0007】
本発明は、以下のような解決手段により、前記課題を解決する。なお、理解を容易にするために、本発明の実施例に対応する符号を付して説明するが、これに限定されるものではない。
請求項1の発明は、電気機械変換素子(11)の励振により、弾性体(12)に振動を発生する振動子(11,12)と、前記振動子に加圧接触され、前記振動により、その振動子との間で相対運動を行う相対運動部材(13)とを備える振動波モータにおいて、前記振動子と前記相対運動部材との摩擦接触面を含む部分の少なくとも一方は、遷移金属及び自己潤滑性物質により形成された複合皮膜層(17)であり、他方は、多孔質酸化皮膜層(18)であり、前記複合皮膜層及び前記多孔質酸化皮膜層は、ともにビッカース硬度が250以上であり、かつ、そのビッカース硬度の差が100以下であること、を特徴とする振動波モータである。
請求項2の発明は、請求項1に記載の振動波モータにおいて、前記複合皮膜層(17))は、無電解ニッケル−リン及びフッ素樹脂により形成された複合メッキ層であること、を特徴とする振動波モータである。
請求項3の発明は、請求項1又は請求項2に記載の振動波モータにおいて、前記多孔質酸化皮膜層(18)は、アルミニウム又はアルミニウム合金表面に陽極酸化処理を施してその表面に酸化皮膜を形成した層であること、を特徴とする振動波モータである。
【発明の効果】
【0008】
本発明によれば、以下の効果を奏することができる。
(1)振動子と相対運動部材との摩擦接触面を含む部分の少なくとも一方は、遷移金属及び自己潤滑性物質により形成された複合皮膜層であり、他方は、多孔質酸化皮膜層であり、複合皮膜層及び多孔質酸化皮膜層は、ともにビッカース硬度が250以上であり、かつ、そのビッカース硬度の差が100以下であるので、摩擦接触面の磨耗を低減し、長時間に渡り安定した駆動を実現でき、振動波モータを長寿命化できる。
(2)複合皮膜層は、無電解ニッケル−リン及びフッ素樹脂により形成された複合メッキ層であり、摩擦係数が小さく、自己潤滑性を有するフッ素樹脂を含むので、摩擦接触面の磨耗を低減でき、摺動時の異音を小さくすることができる。
(3)多孔質酸化皮膜層は、アルミニウム又はアルミニウム合金表面に陽極酸化処理を施してその表面に酸化皮膜を形成した層であるので、通常の室内環境において、腐食の発生がなく、安定して使用できる。
【発明を実施するための最良の形態】
【0009】
本発明は、摩擦接触面の磨耗を少なくし、駆動性能を安定化し、異音の発生が無く、長寿命化を図ることができる振動波モータを提供するという目的を、振動子と相対運動部材との摩擦接触面を含む部分の少なくとも一方は、無電解Ni−P/PTFE複合メッキ皮膜層とし、他方は、アルマイト皮膜層とし、無電解Ni−P/PTFE複合メッキ皮膜層及びアルマイト皮膜層は、ともにビッカース硬度が250以上であり、かつ、そのビッカース硬度の差は100以下とすることにより実現した。
【実施例】
【0010】
以下、本発明による振動波モータの実施例を、添付図面を参照しながら詳細に説明する。なお、本実施例は、振動波モータとして、超音波の振動域を利用する超音波モータを例にとって説明する。
図1は、本発明による振動波モータの実施例を示す図である。
この振動波モータ10は、振動子を構成する圧電体11、弾性体12を備え、この振動子が移動体13に加圧接触するアクチュエータである。
【0011】
圧電体11は、電気機械変換素子の1つであって、駆動信号の供給により励振されるものであり、フェルト等の振動吸収材15を介して、例えば、カメラのレンズ鏡筒等の支持体16に固定されている。
弾性体12は、導電性を有する接着剤等により圧電体11と接着され、圧電体11の励振により進行性振動波を発生させるものである。弾性体12は、金属材料、例えば、黄銅や、ステンレス材料,インバー材料等の鉄合金から形成される。
移動体13は、弾性体12に加圧接触され、進行性振動波により摩擦駆動される相対運動部材である。
フレキシブルプリント基板14は、圧電体11に駆動信号を供給するためのものであり、圧電体11の所定の電極部と電気的に接続されている。
【0012】
図2は、本発明による振動波モータの実施例における弾性体と移動体との摩擦接触面を詳細に示す断面図である。
弾性体12は、移動体13との摩擦接触面上に、無電解Ni−P/PTFE複合メッキ皮膜層17が設けられている。
移動体13は、アルミニウム合金材料により形成され、弾性体12との摩擦接触面上に、多孔質酸化皮膜層であるアルマイト皮膜層18が設けられている。
従って、弾性体12(振動子)と移動体13との摩擦接触面は、無電解Ni−P/PTFE複合メッキ皮膜層17と、アルマイト皮膜層18とが接触する形態となっている。
【0013】
次に、本発明による振動波モータの実施例をさらに詳細に説明する。
弾性体12は、ステンレス(SUS304)により形成され、移動体13との摩擦接触面に形成された無電解Ni−P/PTFE複合メッキ皮膜層17は、無電解ニッケル−リン及びフッ素樹脂により形成された複合皮膜層である。この無電解Ni−P/PTFE複合メッキ皮膜層17は、その膜厚が40μm以下に形成されていることが好ましい。圧電体11は、エポキシ系接着剤等により、この弾性体12の底面(振動体13側とは反対側の面)に接着される。
【0014】
一方、移動体13は、アルミニウム合金(A6063)により形成され、アルマイト皮膜層18は、移動体13の表面に陽極酸化処理を施すことにより形成した層である。具体的には、アルマイト皮膜層18は、アルミニウム又はアルミニウム合金の表面に、硫酸系の水溶液を電解液として陽極酸化処理を施し、その表面に硫酸アルマイトの酸化皮膜層を形成したものである。このアルマイト皮膜層18は、その膜厚が80μm以下に形成されていることが好ましい。
【0015】
以上に示すような無電解Ni−P/PTFE複合メッキ皮膜層17のPTFE含有量とビッカース硬度、アルマイト皮膜層18のビッカース硬度、無電解Ni−P/PTFE複合メッキ皮膜層17とアルマイト皮膜層18とのビッカース硬度の差が異なる振動波モータを複数用意し、同一の条件下で実際に駆動させ、そのモータ初期性能、磨耗量を調べた。
【0016】
図3は、本発明による各実施例及び各比較例の振動波モータの駆動結果を示す表である。
実際に駆動した各実施例及び各比較例の振動波モータは、略同一の形状であるが、図3に示すように、無電解Ni−P/PTFE複合メッキ皮膜層17及びアルマイト皮膜層18のビッカース硬度、そのビッカース硬度の差が異なる。
本発明による実施例1から実施例6までの振動波モータは、図3に示すように、無電解Ni−P/PTFE複合メッキ皮膜層17及びアルマイト皮膜層18のビッカース硬度はともに250以上であり、かつ、そのビッカース硬度の差は100以下である。
比較例1から比較例3までの振動波モータは、無電解Ni−P/PTFE複合メッキ皮膜層17及びアルマイト皮膜層18は、ともにビッカース硬度が250以上である。しかし、無電解Ni−P/PTFE複合メッキ皮膜層17は、加熱硬化処理が施されており、無電解Ni−P/PTFE複合メッキ皮膜層17とアルマイト皮膜層18とのビッカース硬度の差は、100を超えている。
比較例4及び比較例5の振動波モータは、図3に示すように、無電解Ni−P/PTFE複合メッキ皮膜層17とアルマイト皮膜層18とのビッカース硬度の差は100以下である。しかし、比較例4の振動波モータは、無電解Ni−P/PTFE複合メッキ皮膜層17のビッカース硬度が250未満であり、比較例5の振動波モータは、アルマイト皮膜層18のビッカース硬度が250未満である。
【0017】
モータ初期性能は、異音、入力電力、低速での起動性等を意味し、駆動時の異音が小さく、定格出力時のモータ効率(モータからの出力/モータへの入力)が15%以上であり、かつ、定格速度を最低速度で割った値が20以上であるとき、初期性能が良好であるとし、表中に○で示した。
【0018】
耐久性は、1万回転当たりの、無電解Ni−P/PTFE複合メッキ皮膜層17とアルマイト皮膜層18との摩擦接触面の磨耗厚さ(磨耗により減少した分の厚み)が0.5μm未満である場合を、耐久性が良好であるとし、表中に○で示した。また、磨耗厚さが0.5〜1.0μmである場合を耐久性がやや悪いとし、表中に△で示し、磨耗厚さが1.0μm以上である場合は、耐久性が悪いとし、表中に×で示した。
【0019】
図3に示すように、モータの初期性能については、各実施例及び各比較例ともに、良好であった。
耐久性については、実施例1から実施例6までの振動波モータは、良好であった。
しかし、図3に示すように、無電解Ni−P/PTFE複合メッキ皮膜層17とアルマイト皮膜層18とのビッカース硬度の差が100を超える比較例1から比較例3までの振動波モータは、耐久性が劣るという結果が得られた。
また、無電解Ni−P/PTFE複合メッキ皮膜層17又はアルマイト皮膜層18のどちらか一方のビッカース硬度が250未満である比較例4、比較例5の振動波モータも、耐久性が劣るという結果が得られた。
【0020】
さらに、図3に示す駆動結果には記入してないが、アルマイト皮膜層18は、膜厚が80μmを超える場合、その製作過程上に発生する密度が疎である部分が顕著に現れ、アルマイト皮膜層18及び無電解Ni−P/PTFE複合メッキ皮膜層17の磨耗が著しく増加した。
また、無電解Ni−P/PTFE複合メッキ皮膜層17は、膜厚が40μmを超える場合、その製作過程上に発生するPTFEが偏析している部分が顕著に現れ、アルマイト皮膜層18及び無電解Ni−P/PTFE複合メッキ皮膜層17の磨耗が著しく増加した。
さらに、アルマイト皮膜層18又は無電解Ni−P/PTFE複合メッキ皮膜層17のビッカース硬度を250よりも小さくすると、磨耗粉の発生が著しく増加した。
【0021】
よって、以上の結果から、無電解Ni−P/PTFE複合メッキ皮膜層17及びアルマイト層18のビッカース硬度がともに250以上であり、かつ、そのビッカース硬度の差が100以下である、上記のような構成の振動波モータ10を駆動させたところ、従来の振動波モータと比較して、次に示すような有利な効果が得られた。
(1)摩擦接触面の磨耗量が極めて小さく、長時間にわたって安定した摩擦駆動ができる。
(2)弾性体12と移動体13との加圧によって生じる駆動トルクが大きい。
(3)摩擦駆動時に発生する異音が小さい。
(4)長時間の駆動により、経時劣化が少なく、安定した駆動が得られる。
【0022】
また、アルミニウムとニッケルは、相互溶解度が小さい組合せのため、摩擦駆動した場合にも、焼き付け等を起こしにくい。さらに、ニッケルは、遷移金属であり、遷移金属を使用した組合せはシビアーマイルド遷移が期待できる。
このシビアーマイルド遷移とは、一般的になじみ現象と呼ばれるものである。この組合せの場合、激しい磨耗(シビアー磨耗)が直線的に進行するのではなく、一定距離を摩擦した後には、摩擦接触面上に摩擦材両者(アルミニウム、ニッケル)の混合層及びその酸化物層が生じ、それが表面保護層となって、マイルドな磨耗へと遷移が生じるので、長時間安定した駆動ができる。
【0023】
(変形例)
以上説明した実施例に限定されることなく、種々の変形や変更が可能であって、それらも本発明の均等の範囲内である。
(1)本実施例において、弾性体12側に無電解Ni−P/PTFE複合メッキ皮膜層17が設けられ、移動体13側にアルマイト皮膜層18が設けられる例を示したが、これに限らず、これとは逆に、弾性体12をアルミニウム又はアルミニウム合金により形成し、その移動体13側にアルマイト皮膜層18を設け、移動体13の弾性体側12側に、無電解Ni−P/PTFE複合メッキ皮膜層17を設けてもよい。
【0024】
(2)本実施例において、アルミニウム合金は、A6063材を用いる例を示したが、これに限らず、他のアルミニウム合金(A6061、A5056、A5052、A2024、A7075、ADC12、AC8A等)又はアルミニウムを用いてもよい。
また、アルマイト皮膜層18は、硫酸アルマイトである例を示したが、これに限らず、例えば、シュウ酸系アルマイト、混酸系アルマイト等でもよい。
【0025】
(3)本実施例において、弾性体12は、ステンレス(SUS304)を用いる例を示したが、これに限らず、例えば、他の各種ステンレス(SUS303、SUS316、SUS410等)や、各種鉄鋼材料(S15C、S55C、SCr445、SNCM630等)、銅系材料(黄銅、リン青銅、ベリリウム銅、アルミニウム青銅)、アルミニウム合金(A6061、A5056)等を用いてもよい。
【0026】
(4)本実施例において、回転型の振動波モータ10に適用する例を示したが、リニア駆動型の振動波アクチュエータにも適用してよい。
【0027】
(5)本実施例において、振動波モータは、進行性振動波によって、移動体13を駆動する振動波モータ10である例を示したが、これに限らず、例えば、ねじり振動子の振動によって移動体を駆動する振動波モータ等、振動波モータ・アクチュエータ全般に適用することができる。
【0028】
(6)また、本発明は、超音波領域の振動を用いない電気機械変換アクチュエータにも適用できる。
【0029】
(7)本実施例において、無電解Ni−P/PTFE複合メッキ皮膜層17に用いられるフッ素樹脂は、PTFEである例を示したが、これに限らず、その他のフッ素樹脂(PFA、FEP、PCTFE、ETFE、ECTFE、PVDF、PVF等)でもよい。
【図面の簡単な説明】
【0030】
【図1】本発明による振動波モータの実施例を示す図である。
【図2】本発明による振動波モータの実施例における弾性体と移動体との摩擦接触面を詳細に示す断面図である。
【図3】本発明による各実施例及び各比較例の振動波モータの駆動結果を示す表である。
【符号の説明】
【0031】
10 振動波モータ
11 圧電体
12 弾性体
13 移動体
14 フレキシブルプリント基板
15 振動吸収材
16 支持体
17 無電解Ni−P/PTFE複合メッキ皮膜層
18 アルマイト皮膜層


【特許請求の範囲】
【請求項1】
電気機械変換素子の励振により、弾性体に振動を発生する振動子と、
前記振動子に加圧接触され、前記振動により、その振動子との間で相対運動を行う相対運動部材とを備える振動波モータにおいて、
前記振動子と前記相対運動部材との摩擦接触面を含む部分の少なくとも一方は、遷移金属及び自己潤滑性物質により形成された複合皮膜層であり、他方は、多孔質酸化皮膜層であり、
前記複合皮膜層及び前記多孔質酸化皮膜層は、ともにビッカース硬度が250以上であり、かつ、そのビッカース硬度の差が100以下であること、
を特徴とする振動波モータ。
【請求項2】
請求項1に記載の振動波モータにおいて、
前記複合皮膜層は、無電解ニッケル−リン及びフッ素樹脂により形成された複合メッキ層であること、
を特徴とする振動波モータ。
【請求項3】
請求項1又は請求項2に記載の振動波モータにおいて、
前記多孔質酸化皮膜層は、アルミニウム又はアルミニウム合金表面に陽極酸化処理を施してその表面に酸化皮膜を形成した層であること、
を特徴とする振動波モータ。


【図1】
image rotate

【図2】
image rotate

【図3】
image rotate


【公開番号】特開2006−271034(P2006−271034A)
【公開日】平成18年10月5日(2006.10.5)
【国際特許分類】
【出願番号】特願2005−82133(P2005−82133)
【出願日】平成17年3月22日(2005.3.22)
【出願人】(000004112)株式会社ニコン (12,601)
【Fターム(参考)】