説明

Fターム[5F172NS23]の内容

レーザ (22,729) | 温度調節・冷却・温度制御 (959) | 直接的対象 (518) | レーザ共通構成要素 (221) | 光学装置・光素子 (184)

Fターム[5F172NS23]の下位に属するFターム

Fターム[5F172NS23]に分類される特許

1 - 20 / 48


【課題】被加工部位からの戻り光を低減することができ、光中継器及びレーザ発振器が損傷する可能性を低減することのできる光中継器及びレーザ加工装置を提供する。
【解決手段】レーザ発信器からのレーザ光を中継して、被加工部にレーザ光を照射するレーザ照射ヘッドへ供給するためのヘッド側光ファイバーに入射させる光中継器であって、前記レーザ発振器からのレーザ光を前記ヘッド側光ファイバーの端面に集光させるためのレンズを備え、前記ヘッド側光ファイバーの光軸は、前記レンズによって当該ヘッド側光ファイバーの端面に集光されたレーザ光の光軸とは、傾きを有して配設されていることを特徴とする。 (もっと読む)


【課題】信号光の反射戻り光に起因する共振動作を確実に低減できる広い利得帯域を持った光増幅装置を提供する。
【解決手段】光増幅装置1は、入力光ファイバ12からの信号光を光増幅媒体に導き、該光増幅媒体で増幅した信号光を出力光ファイバ13に出力する光学系を備え、該光学系が、光増幅媒体を介して配置された第1および第2の光アイソレータ15,17を含む。各光アイソレータは、信号光と同一方向に伝播する光を透過し、逆方向に伝播する光を遮断することがそれぞれ可能で、逆方向に伝播する光に対するアイソレーションの中心波長が互いに異なっている。第1および第2の光アイソレータ15,17を組み合わせによって、光増幅媒体の利得帯域よりも広いアイソレーション帯域が得られるため、信号光の反射戻り光が各光アイソレータによって確実に遮断される。 (もっと読む)


【課題】 種光をレーザ媒質部において効率良く増幅することができるレーザ増幅装置を提供する。
【解決手段】 レーザ増幅装置は、種光L1を出力する種光源と、励起光L2を出力する励起光源と、励起光L2が入力された状態で種光L1が入力されることにより、種光L1を増幅して出力するレーザ媒質部5と、種光L1が入力されたときに光透過率が高くなる可飽和吸収体6と、を備えている。可飽和吸収体6は、種光L1の光路に沿ってレーザ媒質部5に並設されている。 (もっと読む)


【課題】禁水が必要な場所で使用可能であるYAGレーザー発振装置を提供する。
【解決手段】 筐体と、前記筐体の内部に設置されたレーザー本体と、前記筐体の内部の空気の温度を略一定に調整する温度調整機構と、前記筐体の内部の空気を前記レーザー本体の前記カバーによって囲まれた内部に送り込む第1送風機構と、前記筐体の外部に設置され、前記筐体の内部の空気を前記レーザーポンプチャンバーの内部に送り込む第2送風機構と、を備えたことを特徴とするYAGレーザー発振装置。 (もっと読む)


【課題】中心波長の制御に影響を与えることなくスペクトル純度幅(スペクトル指標値)の安定化制御が行える狭帯域化レーザ装置を提供する。
【解決手段】増幅用レーザ装置から出力されるレーザ光のスペクトル純度幅E95をスペクトル純度幅計測手段で計測し、計測されたスペクトル純度幅E95が、目標スペクトル純度幅E95の許容幅E95±dE95内に収まるように、発振用レーザ装置で放電を開始してから増幅用レーザ装置で放電を開始するまでの放電タイミングを制御する。 (もっと読む)


【課題】ウィンドウのレーザ光による熱負荷による特性の悪化を改善させる。
【解決手段】ウィンドウユニットは、レーザ光を透過するウィンドウと、前記ウィンドウの外縁を保持し、内部に前記ウィンドウの外側または内側の周辺に液体を流す流路が設けられたホルダとが設けられたウィンドウホルダと、を備えていてもよい。流路には、たとえば冷却装置から供給された冷却媒体が流れてもよい。 (もっと読む)


【課題】一緒に実装され得るレーザの温度を上昇させないように構成されたビームダンプを提供する。
【解決手段】ビームダンプ103は、光源101(たとえば、周波数変換レーザ)から光(たとえば、初期光)を受光するように構成された不透明なエンクロージャを含むことができ、前記光は、1つまたは複数の接続された光ファイバ102を介して、エンクロージャの開口を通って伝送される。受光した光は、エンクロージャ内で散乱し得る。しかしながら、ビームダンプ103は、(1つまたは複数の)ファイバ102中への戻り散乱光である光の量を最小限に抑えるように構成される。たとえば、戻り散乱光の量は、初期光の1/1000未満となり得る。さらに、ビームダンプ103は、光がエンクロージャの内側表面に接触するときに生じ得る光汚染を最小限に抑えるように構成することができ、小型で低コストの構造となる。 (もっと読む)


【課題】スペクトル純度幅E95の制御を、中心波長の制御にほとんど影響を与えることなく広い制御範囲で行えるようにし、スペクトル純度幅E95を安定化させた狭帯域化レーザ装置を提供する。
【解決手段】光共振器内の出力側、すなわち出力カプラ31側に波面調整器32が設けられる。レーザチャンバ10で発生した光は、レーザチャンバ10側から波面調整器32を通過し、出力カプラ31に達する。波面調整器32は所望のスペクトル純度幅E95が得られるように、凹レンズ33と凸レンズ34間の距離を調整することで所望の波面になるように調整する。 (もっと読む)


【課題】 はんだを用いて堅牢に光学素子を位置決め固定するレーザ発振器において、光学素子のハンダによる精密固定において、調整後の位置ズレを抑えてレーザ出力低下を1%以下に抑制する。
【解決手段】 レーザ発振器を構成する光学素子を光学平面基台上にハンダ層を介して精密固定する際、前記光学素子の金属製保持部材は、線膨張係数の小さい材料で構成された上部保持部材及び下部保持部材からなり、前記上部保持部材と下部保持部材との間に、はんだ層が設けられ、当該はんだ層を含む前記金属製保持部材を含む前記光学素子を支持する部分の、前記金属製保持部材の前記レーザ発振器の光軸に垂直な方向の高さhを所定値以下に構成した。 (もっと読む)


【課題】波長可変範囲の広帯域化を実現することが可能な波長可変レーザ光源を提供すること。
【解決手段】本発明にかかる波長可変レーザ光源は、透過光強度の波長スペクトルピークを移動させることのできる複数の波長可変共振フィルターを含む波長可変共振器100と、波長可変共振器100と光学的に接続された光増幅器10と、波長可変共振器に含まれる複数の波長可変共振フィルターの透過ピークが一致した波長でレーザ発振し、かつ、透過ピーク波長を外部制御によりチューニングできる機構と、を備え、波長可変共振器100は、波長可変共振フィルター(第1のリング型光共振器110、第2のリング型光共振器120)を少なくとも2つ有し、2つの波長可変共振フィルターは、共振の強さの波長依存性が互いに逆方向で相補的に働くように構成されている。 (もっと読む)


【課題】光出力の変動を抑制して長期的に安定した運用を実現することが可能な構成のレーザ装置を提供する。
【解決手段】レーザ装置は、レーザ光源11からの複数の基本波レーザ光をそれぞれ増幅する複数の光増幅器と、増幅された複数の基本波レーザ光を波長変換光学素子を用いて所定の高調波レーザ光に波長変換する波長変換部20と、高調波レーザ光の一部をモニタ光として分離して、このモニタ光の強度を検出するパワーコントロールユニット50と、パワーコントロールユニット50の検出結果に基づいて、基本波レーザ光の強度を操作して高調波レーザ光の出力制御を行う制御部60とを備え、複数の光増幅器は、励起光源部70からの励起光を光増幅用ファイバEDFに供給して基本波レーザ光を増幅するようにそれぞれ構成され、制御部60は、複数の光増幅器のうちで、波長変換部20での波長変換回数が最も多く設定された基本波レーザ光を増幅するための該光増幅器に供給される励起光出力のみを制御して、基本波レーザ光の強度を操作するようになっている。 (もっと読む)


【課題】 本発明の課題は、小型化を達成しつつ、高効率のレーザ光を発振することのできる受動Qスイッチ固体レーザ発振装置及びレーザ着火装置を提供することである。
【解決手段】 本発明に係る受動Qスイッチ固体レーザ発振装置は、増幅媒体を保持する第1冷却ホルダと可飽和吸収体を保持する第2冷却ホルダとが一体化された冷却ユニットを備え、前記増幅媒体と前記可飽和吸収体とは、前記増幅媒体を通過する光が前記可飽和吸収体に入射可能に空間を介して配置され、前記冷却ユニットの軸線方向に直交する投影面に前記空間を投影したときに形成される空間投影領域は、前記投影面に増幅媒体を投影したときに形成される増幅媒体投影領域と前記投影面に可飽和吸収体を投影したときに形成される可飽和吸収体投影領域とを含む面積を有することを特徴とする。 (もっと読む)


【課題】ファイバレーザおよび非線形光学素子によって、所望の波長および所望のパワーを有するレーザ光を発生させることを可能にする技術を提供する。
【解決手段】レーザ光源101は、シードLD2と、光増幅ファイバ1,11と、励起LD3,9A〜9Dと、波長変換素子を含む波長変換部14とを備える。シードLD2は、パルスレーザ光を発する。光増幅ファイバ1,11は、パルスレーザ光と励起光とが入射されることによりパルスレーザ光を増幅可能に構成される。励起LD3(9A〜9D)は、励起光を発する。波長変換部14は、光増幅ファイバ1,11によって増幅されたパルスレーザ光としての増幅光を受けることによって、増幅光とは波長が異なる波長変換光を発生させる。 (もっと読む)


【課題】光の放射損失を抑制した波長可変光源を提供する。
【解決手段】光増幅器と、光導波路およびその両端に設けられた光共振器ミラーを含む複数の導波路型光共振器と、光導波路の途中に設けられ、導波路型光共振器に対して光を入出力する光共振器タップ構造と、を有し、光増幅器と複数の導波路型光共振器のそれぞれとが光共振器タップ構造を介して光学的に接続されている。 (もっと読む)


【課題】レンズ等に不具合が生じて交換を必要とするようになった場合には、レンズとレンズホルダの全体を交換しなければならなかった。
【解決手段】対物レンズユニット2とカバー部材と固定部材とを設けて対物レンズユニット冷却装置を構成した。対物レンズユニットは、レーザ光が透過される一以上の対物レンズと、一以上の対物レンズを保持するレンズホルダとを有し、レーザ光が透過されることにより発熱を生じる。カバー部材は、内筒カバー34と外筒カバー35を有し、両カバー間に設けた外側流路48及び内筒カバー34と対物レンズユニット2との間に設けた内側流路41をあけて対物レンズを覆う。固定部材には、対物レンズユニットとカバー部材が固定され、対物レンズユニットと固定部材との固定部及びカバー部材と固定部材との固定部を、互いの接触面を密着させると共にねじ部でねじ結合する。これにより、流路に冷却媒体を流す通常の媒体圧力の下において、冷却媒体の漏れを生じない嵌合状態として固定した。 (もっと読む)


【課題】熱パワー及び/または光パワーを光ファイバ装置を構成する光ファイバ部材から放散するパッケージを提供すること。
【解決手段】パッケージに、光ファイバ部材の温度影響部位を収容するキャビティを有したヒートシンク収容容器を備える。一実施形態として、パッケージは熱パワー又は光パワーを放散するパワー放散材を有し、当該パワー放散材がキャビティ内に行き渡り、光ファイバ部材の温度影響部位を取り囲むこととする。他の実施形態として、パッケージは、キャビティとヒートシンク収容容器の端部との間に延びる少なくとも1つのチャネル部を有し、当該チャネル部が光ファイバ部材のクラッドと直接接触することで、光ファイバ部材から熱パワー又は光パワーを放散させる。 (もっと読む)


本発明は携帯電話に適用できる緑色光源生成装置に関し、特に、熱電冷却素子を内装しても体積が1cc未満で超小型であり、消費電力は低いが、十分な出力電力を有する緑色光源生成装置およびそれを用いたレーザプロジェクションディスプレイを備える携帯用電子機器に関する。本発明は、光ダイオードで構成されたLDポンプと;LDポンプの駆動により、赤外線レーザを発生させる基本波発生部と;発生した赤外線レーザを利用して緑色光を生成する2次調和波生成部と;基本波発生部と2次調和波生成部との間に挿入され、レーザの偏光を維持させる偏光維持部;および緑色光源生成装置の内部温度を調節する温度調節部を含む緑色光源生成装置を提供する。
(もっと読む)


【課題】光学素子が当接され光学素子を冷却する冷却フランジを、フランジ押さえとベースで挟んで締結固定する時に、冷却フランジがフランジ押さえやベースに倣い変形することを抑制し、冷却フランジに接触する光学素子の平面度を高精度に保つレーザ発振器を得る。
【解決手段】フランジ押さえと冷却フランジは両者のいずれかに設けた3カ所の突起で接触し、前記3カ所の突起は三角形の頂点に配置され、冷却フランジとベースは両者のいずれかに設けた3カ所の突起で接触し、フランジ押さえと冷却フランジが突起で接触する3点と冷却フランジとベースが突起で接触する3点が互いに向かい合う位置に配置され、冷却フランジを挟んだフランジ押さえとベースを締結部材で締結固定する。 (もっと読む)


【課題】 長時間安定したレーザー出力を維持することができる固体レーザーモジュールを提供する。
【解決手段】 固体レーザー媒質を励起する半導体レーザー光源1と、この半導体レーザー光源1から照射された励起光9を整形し前記固体レーザー媒質に導くための励起光学系2と、少なくとも前記固体レーザー媒質と、この固体レーザー媒質から発せられるレーザー光を共振させる共振ミラーからなるレーザー共振器3を備えた固体レーザーモジュールにおいて、前記励起光学系2、前記レーザー共振器3が直線状に配置されて光軸7を形成しており、前記半導体レーザー光源1およびレーザー共振器3内で発生した熱がその周囲のモジュール保持部4内を前記光軸7に沿った方向に伝搬し、前記半導体レーザー光源1およびレーザー共振器3の周囲以外であり、かつ前記半導体レーザー光源1とレーザー共振器3の中間の領域に設けたモジュール支持部5を伝わってモジュール固定・冷却面6を介してモジュール外部へ排熱される。 (もっと読む)


【課題】歩留まりを向上する。温度チューニング幅を狭くする。
【解決手段】偏光方向によって透過率が異なる光学素子(14)と、定比リチウムタンタレート(LiTaO3)を使用したSLT複屈折結晶(15)とにより複屈折フィルタ(10)を構成し、この複屈折フィルタ(10)を光共振器(17)内に挿入する。
【効果】定比リチウムタンタレート(SLT)によって決まる波長チューニング幅は、従来のイットリウムバナデート(YVO4)によって決まる波長チューニング幅よりも大きいため、SLT複屈折結晶(15)を厚くすることが出来る。このため、許容厚みの誤差が大きくなり、加工に要する精度が緩やかになり、歩留まりを向上できる。SLT複屈折結晶(15)では波長の温度変化率が良いため、温度チューニング幅を狭くすることが出来る。 (もっと読む)


1 - 20 / 48