説明

Fターム[5F003BE04]の内容

バイポーラトランジスタ (11,930) | エミッタ (1,226) | バンドギャップ (158)

Fターム[5F003BE04]に分類される特許

101 - 120 / 158


【課題】ベース層へのHの混入を抑え、ヘテロ接合バイポーラトランジスタ(HBT)のコレクタ電流初期通電時に電流ゲインが良化する電流ゲイン初期変動を抑制する。
【解決手段】半絶縁性GaAs基板101上に、n−GaAsサブコレクタ層102、n−GaAsコレクタ層103、カーボンをドープしたp−GaAsベース層104、GaAsの格子定数に整合したn−InGaP水素ストッパ層105、n−InGaPエミッタ層106、n−GaAsエミッタ層107、n−GaAsエミッタ層108、n−InGaAs−Grading層109、n−InGaAsキャップ層110のエピタキシャル層を順に形成してHBTを構成する。 (もっと読む)


【課題】 ヘテロ接合バイポーラトランジスタ用エピタキシャルウェハにおいて、エミッタ層とエミッタコンタクト層との間に形成される遷移層に起因する電流利得率の低下を防止する。
【解決手段】 GaAs基板上に少なくともコレクタ層、GaAsベース層、InGaPエミッタ層、GaAsエミッタコンタクト層、及びノンアロイ層がエピタキシャル成長によって順次形成されたヘテロ接合バイポーラトランジスタ用エピタキシャルウェハにおいて、前記InGaPエミッタ層と前記GaAsエミッタコンタクト層との間に、前記InGaPエミッタ層よりも低In組成のInxGa1-xP層の薄膜層が形成されていることを特徴とする。 (もっと読む)


【課題】BiCMOSなどの半導体装置に搭載される用途の異なる各素子の性能を両立させることができる高性能な半導体装置の製造方法を提供する。
【解決手段】P型Si基板1上の高速用HBTの形成領域Aに高濃度のリンイオンを注入した後、Si基板1上にシリコン酸化膜3を形成する。その後N型Si層をエピタキシャル成長させると、高速用HBTの形成領域Aではまずシリコン酸化膜3の蒸発が起こり除去されてからN型Si層が成長する。このためラテラルPNP、PN接合型バラクタ、高耐圧用HBTトランジスタ等の素子よりも薄いN型Si層が得られるため用途の異なる各素子の性能を両立させることができる。 (もっと読む)


【課題】歪みチャネルMOSFETを有するCMOSFEの製造工程内で、特性の劣化をきたすことなくPNPバイポーラトランジスタを形成する。
【解決手段】素子分離層11によって分離されたベース領域12Cの周辺に、歪みチャネルMOSFETの歪み付与半導体領域27の形成を阻止する阻止層を、CMOSのゲート電極部の形成と同一工程で形成し、これによって歪み付与半導体領域27のエピタキシャル成長と同時に形成されるエミッタ領域12Eが素子分離層11から離間してエピタキシャル成長されるようにする。このようにしてエミッタ領域12Eが素子分離層11に接して形成される場合の欠陥発生を回避して、トランジスタ特性の向上を、工程数を増加させることなく構成することができるようにする。 (もっと読む)


【課題】2次元正孔ガス層をp型ベースとし且つ窒化物系半導体からなり高速に動作するバイポーラトランジスタを実現できるようにする。
【解決手段】バイポーラトランジスタは、窒化物半導体からなる第1の半導体層14を含むエミッタ層と、第1の半導体層14と比べてバンドギャップが小さい窒化物半導体からなり且つ第1の半導体層14と接して形成された第2の半導体層15を含むベース層と、第2の半導体層15における第1の半導体層14とは反対側の面と接して形成された窒化物半導体からなる第3の半導体層16を含むコレクタ層とを備えている。第2の半導体層15における第1の半導体層15と第2の半導体層14との界面領域には、2次元正孔ガス層が発生し、ベース層の一部と接するように選択的に形成されたベース電極19は、2次元正孔ガス層とオーミック接続している。 (もっと読む)


【課題】ベースコレクタ耐圧と電流増幅率を確保し、ベース抵抗を低減したヘテロ接合バイポーラトランジスタを提供する。
【解決手段】基板表面上に、エミッタコンタクト領域、第1の半導体材料からなるエミッタ領域、前記第1の半導体材料よりも禁制帯幅の小さな第2の半導体からなるベース領域、前記第1の半導体材料からなるコレクタ領域、コレクタコンタクト領域が前記基板表面に平行な方向に順次形成され、前記エミッタ領域、前記ベース領域、前記コレクタ領域と、前記基板表面との間に、前記第1の半導体材料よりも禁制幅の大きな第3の半導体材料からなるバッファ層を有するとともに、エミッタ電極、ベース電極、及びコレクタ電極がそれぞれ前記エミッタコンタクト領域、前記ベース領域、及び前記コレクタ領域に接して形成されたヘテロ接合バイポーラトランジスタである。 (もっと読む)


【課題】ベース抵抗が小さく優れた高周波特性を有する窒化物半導体バイポーラトランジスタ及びその製造方法を提供する。
【解決手段】窒化物半導体バイポーラトランジスタにおいて、エミッタ層に接する形で形成されたコンタクト層がn型InAlGaN4元混晶により形成され、前記エミッタ層と前記コンタクト層はその上に形成されたエミッタとの障壁高さが小さくInAlGaN4元混晶上ではオーミック電極コンタクト抵抗を小さくできる例えばWSiエミッタ電極が庇となるように選択的に除去されており、このエミッタ電極をマスクとしてベース電極がセルフアライン工程にて形成される。このような構成にすることにより、エミッタ段差とベース電極端との間の距離を、十分に小さくし、ベース抵抗を低減できる。この結果、良好な高周波特性を有するバイポーラトランジスタを実現することが可能となる。 (もっと読む)


【課題】エッチピットを低減可能な構造を有するバイポーラトランジスタ及びその製造方法を提供する。
【解決手段】HBT1は、半絶縁性のInP基板2と、同基板2上に形成されたバッファ層30と、バッファ層30上に形成されたサブコレクタ層40と、コレクタ層80と、ベース層90と、エミッタ層100と、エミッタ層100上に形成されたエミッタコンタクト層110とを有する。エミッタ層100のエッジは、エミッタコンタクト層110のエッジから離れて設けられている。また、エミッタ層110の表面は、平坦化されている。HBT1は、サブコレクタ層40上にコレクタ電極17と、エミッタ層100上にベース電極16と、エミッタコンタクト層110上にエミッタ電極15とを備える。 (もっと読む)


【課題】
従来よりも静電破壊耐圧を高くできる静電保護素子を提供する。
【解決手段】
ビルトインポテンシャルがSiGeのバンドギャップとほぼ同じになるn型Siとp型SiGeのpn接合を用いた静電保護素子を静電気が印加される端子と静電気を放電する端子間に接続することにより、n型Siとp型Siのpn接合に比べてpn接合に電流が流れはじめる電圧であるON電圧を低くでき、静電気が印加されて端子間電圧がまだ低い場合でも静電気が放電しはじめるようにして、静電破壊耐圧を上げる効果を得る。 (もっと読む)


【課題】 低電圧動作に有利であると共に、ベース層のシート抵抗を低減してfmaxの増大及びGainの増大、更には高効率動作を可能とし、また特にエミッタ層を制御性良く高品質に形成でき、エミッタ注入効率を安定して得ることのできるHBT構造を具備する(並びにこれを主要な構成要素とする)半導体装置を提供すること。
【解決手段】 第1導電型のエミッタ層と、第2導電型のベース層と、第1導電型のコレクタ層とを半導体基体上に有するHBT(ヘテロ接合バイポーラトランジスタ)を具備する半導体装置において、前記エミッタ層及び前記コレクタ層はGaAsを主成分とし、前記ベース層はGeを主成分とすることを特徴とする半導体装置。 (もっと読む)


【課題】ワイドギャップバイポーラ半導体素子を高信頼性かつ低損失で駆動でき、可制御電流を大きくできる電力変換装置を提供する。
【解決手段】この電力変換装置では、SiC−GTOサイリスタ1の稼動に先立ち、温度上昇用n型MOSFET11のゲート13に信号を印可してオンさせ、電源14 → アノード端子2 → ゲート端子4 → 抵抗12 → 温度上昇用n型MOSFET11 → 電源14の経路で温度上昇用電流(加熱電流)として約40Aの電流を流す。上記温度上昇用電流により、SiC−GTOサイリスタ1の温度を上昇させる。これにより、サイリスタ1の稼動により積層欠陥が増大したとしても、オン電圧の増大や最小ゲート点弧電流の増大、ターンオン時間の増大およびオフ時の電流の不均衡の増大などの劣化現象を抑制できる。 (もっと読む)


【課題】下層からのマグネシウムの拡散を利用した電界効果トランジスタの製造。
【解決手段】マスク層2mでp型層1pの表面の一部を覆い、Mg原料を導入せずにGaN層を形成するべくエピタキシャル成長を行うと、下層のp型層1pに接触する部分においては、当該p型層1pからMgが拡散してpボディ層4pが形成され、マスク層2mの上部は、アンドープGaNから成るチャネル形成層4iが形成される。同様に、pボディ層4pの上部には、pボディ層4pからMgが拡散してp−AlGaN層5pが形成され、チャネル形成層4iの上部には、アンドープAlGaN層5iが形成される。このようにして製造されたHEMT100は、ボディ電極Bdの形成されるp−AlGaN層5p表面がエッチング処理されていないのでオーミック性が良好であり、ボディ電極Bdからチャネル形成層4iの電位を安定して保つことができ、素子特性の安定した素子となる。 (もっと読む)


【課題】 本願発明は、高コレクタ電流時、高速動作を維持できるSiGeCヘテロ接合バイポーラトランジスタ、及びその製造方法を提供する。
【解決手段】 SiGeCヘテロ接合バイポーラトランジスタの代表例のコレクタは、n型単結晶Si層、及びn型単結晶SiGe層からなる。又、ベースは高濃度p型単結晶SiGeC層からなり、更にエミッタはn型単結晶Si層からなる。n型単結晶SiGe層とp型単結晶SiGeC層のヘテロ界面において、p型単結晶SiGeC層のバンドギャップは、n型単結晶SiGe層以上である。コレクタ電流の増加によって、実効的な中性ベースが拡大した場合でも、n型単結晶SiGe層とp型単結晶SiGeC層のヘテロ界面における伝導帯に、エネルギー障壁が発生しない。このため、電子の拡散が阻害されないことから、高注入状態においても、高速動作性能を維持できるヘテロ接合バイポーラトランジスタを実現でき、これを用いた回路の高性能化が可能となる。 (もっと読む)


【課題】結晶性が良く、低抵抗なp型窒化物半導体層を用いた半導体素子を提供する。
【解決手段】本発明の一実施例によれば、c面サファイア基板102上に、ECRプラズマ成膜装置によりAl、AlON、AlN系の緩衝層104を堆積する。この緩衝層上に有機金属気相成長法により、1000℃の水素雰囲気において、GaN層106を2μm成長する。その後、5nm厚のMgドープAl0.6Ga0.4N130と5nm厚のGaN150とを交互に積層した超格子サブコレクタ108を0.5μm成長する。Mgのドーピング濃度は、3×1019cm−3程度である。結晶成長後、Mg原子の活性化のために、窒素雰囲気において700℃で10分間の熱処理を行う。このようにして得られたp型窒化物半導体層は、正孔濃度が高く、大きな格子不整合を有するAlGaN/InGaN系においてもクラックを生じることなく、高いAl組成のAlGaNを成長することができる。 (もっと読む)


【課題】層厚の厚い高品質な窒化物半導体結晶層が、該結晶層内の歪を緩和させた状態で、再現性よく得られる半導体装置を提供すること。
【解決手段】基板1であるSi基板上に、核形成層2であるAlN層(層厚150nm)、バッファ層3であるIn1−XAlN組成傾斜層(層厚210nm、In組成1−Xは、上から下に向けて、0.17から0.1まで変化、組成変化率 層厚30mnあたり0.01)、窒化物半導体結晶層4である、GaN層(層厚1000nm)およびAlGaNバリア層(層厚25nm、Al組成0.25)を、順次積層してなる積層構造を有する半導体装置を構成する。 (もっと読む)


【課題】特にGaAsSb系ベース層を有するHBTにおいて、HBT素子の特性を劣化させることなく、素子表面を部分的に不活性化するHBTを提供する。
【解決手段】所定の材質の基板1上に形成したコレクタ層3、ベース層4、エミッタ層5を含む層構造の少なくとも側壁をAl酸化膜8で覆っている構造とする。基板1としてInPを、ベース層4に、少なくとも一層はAl(x)Ga(1−x)As(y)Sb(1−y)を用いる(x,y:組成比、0.0≦x≦0.2,0.2≦y≦0.8)。すなわち、基板1上に、エミッタ層5、ベース層4、コレクタ層3を含むHBTの層構造を結晶成長により作製した後、エッチングによりメサ状に加工し、さらに、表面に堆積させた前記Al化合物を酸化させることによりAl酸化膜8を形成し、電極形成領域に堆積させたAl酸化膜8をエッチングにより除去して電極9を形成する。 (もっと読む)


【課題】携帯電話機などに使用されるRFモジュールの小型化を図ることのできる技術を提供する。
【解決手段】RFモジュール25を構成する配線基板26上に、増幅回路が形成された半導体チップ28と、増幅回路を制御する制御回路が形成された半導体チップ27とを搭載する。そして、半導体チップ27上のボンディングパッド30と半導体チップ28上のボンディングパッド31とを中継パッドを介さずにワイヤ32で直接接続する。このとき、半導体チップ28上に形成されているボンディングパッド31の形状を正方形ではなく矩形形状(長方形)にする。 (もっと読む)


【課題】デュアルバンド電力増幅器の最終段トランジスタにおける電流集中を、バンド間アイソレーションを劣化させることなく回避する。
【解決手段】最終段電力増幅トランジスタ(Trg3,Trd3)の単位トランジスタについて、最終出力増幅トランジスタ形成領域(PW3)内に単位トランジスタを交互にまたは取囲むように混在して配置する。また、これらの最終出力段トランジスタが結合する出力信号線の間に、インダクタンス素子(Lcc)を接続する。 (もっと読む)


【課題】高出力化に付随して要求される高耐破壊化を満たすヘテロ接合バイポーラトランジスタを提供する。
【解決手段】GaAsからなるn型のサブコレクタ層110と、サブコレクタ層110上に形成され、サブコレクタ層110よりアバランシェ係数の小さい半導体材料からなるn型の第1のコレクタ層121と、第1のコレクタ層121上に形成され、サブコレクタ層110より低い不純物濃度のn型又はi型のGaAsからなる第2のコレクタ層203と、第2のコレクタ層203上に形成され、GaAsからなるp型のベース層204と、ベース層204上に形成され、ベース層204よりバンドギャップの大きな半導体材料からなるn型のエミッタ層205とを備えるヘテロ接合バイポーラトランジスタ。 (もっと読む)


【課題】本来InP基板に格子整合性を有するInP系半導体素子をGaAs基板に形成することができるようにする。
【解決手段】GaAs基板1上にInPメタモルフィックバッファ層2を、厚さ4μm以上として、その表面の欠陥密度を10/cm以下にすることによって、GaAs基板上に、すぐれた特性と信頼性を有する、InP系半導体素子11を構成する (もっと読む)


101 - 120 / 158