説明

Fターム[4M104DD33]の内容

半導体の電極 (138,591) | 製造方法(特徴のあるもの) (30,582) | 電極材料の析出 (10,624) | PVD (4,537)

Fターム[4M104DD33]の下位に属するFターム

Fターム[4M104DD33]に分類される特許

201 - 220 / 227


【課題】ゲート長の短縮に対応して最適な接合深さのエクステンション部を形成できなくなってきている。
【解決手段】ゲートスタック7と側壁絶縁膜9からなる所定の幅のスペーサをマスクとする不純物のイオン注入と活性化アニールにより、2つのソース・ドレイン領域10をPウェル3に形成する。側壁絶縁膜9を除去し、これより薄い隔壁絶縁膜11を形成することによって、このスペーサの幅方向両側を後退させる。これによりスペーサのエッジと2つのソース・ドレイン領域10のエッジとを幅方向両側で離す。この状態で、後退したスペーサの幅方向両側に露出し2つのソース・ドレイン領域10を含むウェル領域に選択的なエピタキシャル成長により半導体材料を成長させ、後退したスペーサにより分離する2つのエクステンション部12を形成する。この製法においては、イオン注入の活性化アニールによりエクステンション部12内の不純物がPウェル3内に熱拡散しない。
(もっと読む)


【課題】Cu配線中にCuとは異なる金属材料を均一に拡散させたCu合金配線を形成することが可能な半導体装置の製造方法を提供する。
【解決手段】基板11上の層間絶縁膜17に設けられた接続孔18に合金層を形成する半導体装置の製造方法であって、接続孔18の内壁を覆う状態で、第1のCu層20aを形成する第1工程と、第1のCu層20a上にAg層21を形成する第2工程と、Ag層21が設けられた状態の接続孔18を第2のCu層20bで埋め込む第3工程と、熱処理による拡散により、CuAg合金からなるヴィアを形成する第4工程とを有することを特徴とする半導体装置の製造方法である。 (もっと読む)


【課題】空孔を有する低誘電率絶縁膜上にバリアメタルを成膜する前におけるビア底の高抵抗層の除去手段として、プラズマを用いない新規な半導体装置の製造方法及び製造装置を提供する。
【解決手段】層間膜に比誘電率の値が3未満の低誘電率膜102を用いた金属膜配線103を含む半導体装置の製造方法において、前記金属膜配線と前記層間膜の間に形成されるバリアメタル105を成膜する前に、100℃〜400℃に温調されたNH3ガスなどの還元性を有するガスもしくは還元性を有するガスを含む混合ガスで熱還元処理を行う。 (もっと読む)


【課題】 ゲート誘電体とゲート電極との間にVt安定化層を含む半導体構造を提供することにある。
【解決手段】 Vt安定化層は、構造のしきい電圧およびフラットバンド電圧を目標値に安定化することができ、窒化金属酸化物または窒素なし金属酸化物を含み、Vt安定化層が窒素なし金属酸化物を含む条件で半導体基板またはゲート誘電体のうちの少なくとも一方が窒素を含む。また、本発明は、このような構造を形成する方法も提供する。 (もっと読む)


【課題】PチャネルトランジスタとNチャネルトランジスタの仕事関数を、価電子帯上端と伝導帯下端にそれぞれ近づけることで、しかも製造工程数を大幅に増加させることなく、金属ゲートの高い閾値電圧を低下させた半導体装置およびその製造方法を可能とする。
【解決手段】Pチャネルトランジスタ2とNチャネルトランジスタ1とを有する半導体装置であって、Pチャネルトランジスタ2のゲート電極39はニッケルからなり、Nチャネルトランジスタ1のゲート電極29はアンチモンを含んだニッケルシリサイドからなるものである。 (もっと読む)


【課題】本発明は、しきい値のずれが生じにくく、高速動作が可能な逆スタガ型TFTを有する液晶表示装置の作製方法を提供する。また、スイッチング特性が高く、コントラストがすぐれた表示が可能な液晶表示装置の作製方法を提供する。更には、少ない原料でコスト削減が可能であり、且つ歩留まりが高い液晶表示装置の作製方法を提供する。
【解決手段】 本発明は、耐熱性の高い材料でゲート電極を形成した後、非晶質半導体膜の結晶化を促進する触媒元素を有する層、非晶質半導体膜、及びドナー型元素又は希ガス元素を有する層を形成し加熱して、非晶質半導体膜を結晶化すると共に触媒元素を結晶性半導体膜から除いた後、該結晶性半導体膜の一部を用いて半導体領域を形成し、該半導体領域に電気的に接するソース電極及びドレイン電極を形成し、ゲート電極に接続するゲート配線を形成して、逆スタガ型TFTを形成する。 (もっと読む)


【課題】 ウェハ面内において無電解メッキ法による所定のキャップ層を均一に形成するための半導体装置の製造方法と、その製造方法によって得られる半導体装置を提供する。
【解決手段】 リセス5bの内部を含む層間絶縁膜5の全面に導電性薄膜9が形成される。次に、無電解メッキ法により、導電性薄膜9上にCoWP膜の無電解メッキ層10が形成される。次に、CMP処理を施すことにより、リセス5b内に位置する無電解メッキ層10および導電性薄膜9の部分を残して、層間絶縁膜5の上面上に位置する無電解メッキ層10および導電性薄膜9の部分が除去されて、半導体装置において、銅メッキ層および無電解メッキ層等を含む銅配線が形成される。また、リセス5b内に位置する無電解メッキ層および導電性薄膜は銅メッキ膜を覆うキャップ層とされる。 (もっと読む)


【課題】本発明は接着力に優れた多層薄膜を含む素子及びその製造方法を提供する。
【解決手段】本発明によると、基板上に形成された窒化タンタル膜と、窒化タンタル膜上に形成されたタンタル膜と、タンタル膜上に形成されたAu薄膜とを含む多層薄膜を含む素子に関する。また、本発明は窒化タンタル膜が形成された基板上にタンタルを所定厚さに蒸着させた後に、Au薄膜を蒸着させて多層薄膜を製造し、これを熱処理する工程を含む素子の製造方法に関する。 (もっと読む)


【課題】略規則性をもって配列されたチャネル形成領域構成微粒子と有機半導体分子との結合を有するチャネル形成領域を備えた電界効果型トランジスタを提供する。
【解決手段】電界効果型トランジスタは、ソース/ドレイン電極14、チャネル形成領域15、ゲート絶縁層13及びゲート電極12を備え、少なくとも、ソース/ドレイン電極14間に位置する支持体11の部分とチャネル形成領域15との間には、下地層30が形成され、下地層30は電気的絶縁材料から成る下地層構成微粒子31が略規則性をもって配列されて成り、チャネル形成領域15は、導体又は半導体から成るチャネル形成領域構成微粒子21と、該チャネル形成領域構成微粒子21と結合した有機半導体分子22とによって構成された導電路20を有し、下地層30の微粒子配列状態に基づき、チャネル形成領域構成微粒子21が略規則性をもって配列されている。 (もっと読む)


【課題】その後の加工プロセスとの整合性を有し、かつ、表面のダメージをより簡便にかつ効率良く修復する事ができる表面疎水化法、ならびに表面のダメージの修復に使用可能な表面疎水化用組成物、及び前記表面疎水化方法によって、表面疎水化処理が施された層を含む半導体装置及びその製造方法、を提供する。
【解決手段】層間絶縁膜20をエッチングして形成された凹部22の内壁22aの表面に、(A)官能基を有するシラン化合物と、(B)有機溶媒と、(C)安定化剤とを含む膜を形成し、前記膜中に含まれるシラン化合物と、前記凹部内壁表面にエッチングで生成されたシラノール基を反応させることによって、前記凹部内壁表面に疎水性膜24を形成した後、凹部内に導電性膜26を充填する。 (もっと読む)


後に酸素含有環境に晒されるときに下地の金属層の特性及び形態を維持する不動態化された金属層を形成する方法が提供される。当該方法は、処理チャンバー(1)内に基板(50、302、403、510)を設置する工程、化学的気相堆積法にて基板(50、302、403、510)上にレニウム金属層(304、408、580)を堆積するために、レニウム−カルボニル前駆体を含有する処理ガスに基板(50、302、403、510)を晒す工程、及びレニウム金属表面でのレニウム含有ノジュール(306)の酸素誘起成長を抑制するために、レニウム金属層(304、408、580)上にパッシベーション層(414、590)を形成する工程を有する。
(もっと読む)


【課題】熱電変換材料の表面に、緻密で高品位、密着力の高いコーティング皮膜を形成し、簡便且つ低コストで電極を得る。
【解決手段】ショットコーティング技術を用い、BiTeなどからなる熱電変換材料の表面に、粒径が0.5〜200μmのニッケル、鉄、コバルト、アルミニウムなどからなり、銅より融点の低い金属粉末を常温・大気中で、200〜1000m/sで高速噴射することによって、金属皮膜又は金属を主体とした電極皮膜を形成する。 (もっと読む)


【課題】 SiC基板に対して、低抵抗で良好なオーミック電極を容易に形成できるSiC半導体装置およびSiC半導体装置の製造方法を提供する。
【解決手段】 n型SiC基板1aの電極形成領域上に、該n型SiC基板1aの導電型と同一の導電型(n型)の不純物を有してなる不純物拡散源層2aを形成し、不純物拡散源層2a上に、Niなどの金属からなる金属層3を形成し、不純物拡散源層2a及び金属層3に対して焼鈍処理を施すことを特徴とする。 (もっと読む)


集積回路内の金属(304)の相互接続の製造工程および品質を改善するために、ガスクラスタ・イオンビーム(GCIB)(128)によって集積回路相互接続構造の溝やビア内の材料を取り除いたり再配分したりする方法が開示されている。この工程では、構造の入口の領域での不要な「ネックイン」を広げ、構造の頚部または底部等のより厚い領域から側壁に、バリア金属(308)を再堆積させたり、スパッタリングによって構造の底部の余分で不要な材料の一部を取り除く。GCIB処理は、バリア金属堆積後で銅シード層(310)/銅(312)電気メッキ前に適用することも、銅シード層(310)の形成後で電気メッキ前に適用することもできる。この方法は、既知の相互接続堆積技術の有用性を、次世代以降の集積回路まで拡張できる。
(もっと読む)


ゲート電極の層を堆積させる方法が提供される。その方法には、ドープされた多結晶シリコン層と、タングステンシリサイド薄層と、金属層とを堆積させるステップが含まれる。一態様においては、ドープされた多結晶シリコン層とタングステンシリサイド薄層は集積処理システム内に堆積される。他の態様においては、タングステンシリサイド層を堆積させるステップには、多結晶シリコン層をシリコン源に曝す工程と、タングステンシリサイド層を堆積させる工程と、タングステンシリサイド層をシリコン源に曝す工程とが含まれる (もっと読む)


本発明は、CMOS素子を製造する方法に関し、その方法は、絶縁材料層(102)をその中に有する半導体基板(101)を準備するステップと、絶縁層(102)の上に第1の材料層(106)を形成するステップとを備え、第1の材料層(106)の厚さが、第1の能動素子を担持する第1の領域(103)では、第2の能動素子を担持する第2の領域(104)より薄い。次いで、第2の材料層(107)が、第1の材料層(106)上に形成され、次いで、その構造体に熱処理が行われて、第1と第2の材料が合金化される。第1の領域上の両層部分は全体が合金化されるが、第2の領域上の両層部分はそうはならず、その結果、第1の材料層(106)の一部分(109)が残留する。
(もっと読む)


【課題】 サイドウォールの酸化膜・シリコン界面の窒化による界面準位の発生を抑制することにより、トランジスタの性能劣化を防止する。
【解決手段】 基板101上に形成されたゲート電極104と、ゲート電極104の側壁に形成された第1のサイドウォールである酸化膜105と第2のサイドウォールである窒化膜106と、ゲート電極104の側方に位置する基板101の領域の中に形成された低濃度不純物拡散領域107と高濃度不純物拡散領域109とを備え、第1のサイドウォールである酸化膜105と低濃度不純物拡散領域107との界面における窒素濃度が1×1020cm-3以下である。これにより低濃度不純物拡散領域107と第1のサイドウォールである酸化膜105の界面における界面準位の発生量が少なくなり、界面準位による低濃度不純物拡散領域への空乏層の形成を抑制し、トランジスタ性能の劣化を防止する。 (もっと読む)


【目的】 不純物の残留を抑制し、バリアメタルを高純度に成膜することを目的とする。
【構成】 基体上にTa[N((CHを供給するTa[N((CH供給工程(S102)と、前記Ta[N((CHにおけるTaとは異なるCを除去するH供給工程(S106)と、前記Cが除去された前記Ta[N((CHの吸着分子に基づいて前記TaN膜を生成するNH供給工程(S108)と、を備え、前記Ta[N((CH工程とH供給工程とNH供給工程とを繰り返すことで、前記基体上にTaN膜を堆積させることを特徴とする。 (もっと読む)


【課題】 機械的強度に優れると共に、低抵抗であって且つ絶縁膜に対する密着性の高いバリアメタル膜を有する半導体装置を提供する。
【解決手段】 基板(1)上に形成された絶縁膜(6)と、絶縁膜(6)中に形成された埋め込み金属配線(10)と、絶縁膜(6)と金属配線(10)との間に形成されたバリアメタル膜(A1)とを備えた半導体装置において、バリアメタル膜(A1)は、絶縁膜(6)が存在している側から金属配線(10)が存在している側へ向かって順に積層されている金属酸化物膜(7)、金属化合物膜(8)及び金属膜(9)よりなる。金属化合物膜(8)の弾性率は、金属酸化物膜(7)の弾性率よりも大きい。 (もっと読む)


【課題】 セルフアライン形成技術によりセルフアライン形成領域の絶縁膜に形成されたコンタクトホールの径に比較してさらに開孔幅の大きな穴部を絶縁膜の上部に形成するためセルフアライン形成領域を再度エッチング処理する必要があったとしても、セルフアライン形成領域内のセルフアラインマスク膜に悪影響が及ぼされることなく、さらにセルフアライン形成領域に対して複数回に分けて接続配線を埋込み形成する必要をなくす。
【解決手段】 領域CB2に対して第1のコンタクトホール16を形成した後、フォトレジスト38、塗布型酸化膜39、フォトレジスト40の3層構造の多層レジスト構造41を形成し、第5のシリコン酸化膜23の上部に穴部24および25を形成する。 (もっと読む)


201 - 220 / 227