説明

Fターム[2G016CB00]の内容

遮断器と発電機・電動機と電池等の試験 (23,023) | 電池の測定項目 (6,284)

Fターム[2G016CB00]の下位に属するFターム

Fターム[2G016CB00]に分類される特許

21 - 40 / 153


【課題】異なる二次電池が搭載された場合であっても正確に状態を検出すること。
【解決手段】車両に搭載された二次電池の状態を検出する二次電池状態検出装置において、二次電池が交換された際に、新たな二次電池に関する情報が設定される設定手段(可変抵抗21)と、設定手段に設定された情報を取得する取得手段(A/D変換部22)と、取得手段によって取得された情報に基づいて、新たな二次電池の状態を検出する検出手段(CPU29)と、を有する。 (もっと読む)


【課題】推定SOCを、OCVによるSOC推定方法で求めたSOCにシフトさせることにより推定SOCがシフト前よりも増大してしまうことを抑制することである。
【解決手段】電池管理装置は、制御部が、電池に流れる電流を時間で積算する電流積算により推定SOCを求めるSOC積算処理と、電池のOCVを測定する電圧測定処理と、OCV−SOCの相関関係上、OCVの測定値が属する領域における、SOCに対するOCVの変化率が小さいほど、幅が広い基準範囲を設定する基準範囲設定処理と、SOC積算処理で求められた推定SOCが、基準範囲外である場合、当該推定SOCを前記基準範囲側にシフトさせ、推定SOCが基準範囲以内である場合、当該推定SOCをシフトさせない、SOC調整処理と、を実行する。 (もっと読む)


【課題】均等化回路を簡単な回路構成としながら電池の電圧を高い精度で検出する。
【解決手段】車両用の電源装置は、複数の電池2を直列に接続してなる走行用バッテリ1と、走行用バッテリ1の各電池2の電圧を検出する電圧検出回路3と、走行用バッテリ1の電池2を放電して各電池2を均等化させる均等化回路4とを備える。均等化回路4は、放電スイッチ22と放電抵抗23とを直列に接続している放電回路21を備えると共に、この放電回路21を電圧検出ライン9を介して電池2に接続している。電圧検出回路3は、放電スイッチ22をオンに切り換えて、放電回路21を電池2に接続する状態における電圧検出ライン9の電圧降下による補正電圧を検出する補正回路5を備えている。電源装置は、放電スイッチ22のオン状態において、電圧検出回路3が、補正回路5で検出する補正電圧でもって、検出される電池2の検出電圧を補正して電池電圧を検出する。 (もっと読む)


【課題】二次電池のSOCおよび電池温度の組合せに従った学習領域毎に学習された直流抵抗および拡散係数のパラメータ変化率に基づいて、二次電池の劣化を適切に評価する。
【解決手段】変化率マップ141は、直流抵抗のパラメータ変化率のオンライン学習値grlを学習領域毎に記憶する。変化率マップ142は、拡散係数のパラメータ変化率のオンライン学習値gdlを学習領域毎に記憶する。変化率マップ141,142に記憶されたオンライン学習値が反映された電池モデル125を用いて、二次電池が所定のパターン電流に従って充放電したときの電圧挙動をシミュレーションするための仮想試験が実行される。劣化指標算出部250は、学習領域毎に実行された仮想試験の結果に基づいて、二次電池の劣化指標値Pdgを算出する。 (もっと読む)


【課題】負極に起因(詳細には、負極において充放電反応に寄与できるLiが減少することに起因)した容量低下率を推定することができる二次電池システムを提供する。
【解決手段】二次電池システム6は、外部電源46を用いたリチウムイオン二次電池100の充電時にdQ/dVの値を算出するdQ/dV算出手段と、電池電圧Vの値とdQ/dVの値に基づいて、V−dQ/dV曲線上の第1電池電圧値V1以上第2電池電圧値V2以下の電池電圧範囲内に現れるピークP1の電池電圧値Xを推定するピーク電圧推定手段と、予め二次電池システム6に記憶させておいたピークP1における電池電圧値Xと電池100の容量低下率Yとの相関を表すデータに基づいて、ピーク電圧取得手段により取得されたピーク電池電圧値Xから電池100の容量低下率Yを推定する容量低下率推定手段を備える。 (もっと読む)


【課題】 比較的容易に測定可能なバッテリの計測値を使って、所定の統計的モデルに基づき、統計的計算により、バッテリの内部状態を直接測定した値を近似する値を得て、これに従い、バッテリの容量維持率を予測する技法を提供すること。
【解決手段】 バッテリの内部状態を表す基礎データ(正負極交流インピーダンス曲線プロットから抽出した特徴量など)を基に容量維持率を算出する観測モデルと、1ステップ前の内部状態、劣化環境(SOCすなわち実際に使うことができる電池容量、温度など)を現在の内部状態へ写像する遷移モデルとが予め用意される。そして、これらのモデルを用いて、尤度が最大、すなわち、これらのモデルから計算された予測値と実際の値との差異の自乗和が最小となる内部状態の遷移パスを、好適には動的計画法である最適化手法により求め、容量維持率を予測する。 (もっと読む)


【課題】電池の状態を判定する技術を提供する。
【解決手段】BMS20は、充電部26によって充電される二次電池12の状態を判定する装置であって、電流計22と電圧計24とCPU30を備える。CPU30は、制御部42及び計時部40として機能し、充電部26による二次電池12の定電流充電時間TCと定電圧充電時間TVを計時する。また、判定部44として機能し、定電流充電時間TCと定電圧充電時間TVを用いて判定値Jを算出し、この判定値を用いて二次電池12の状態を判定する。この充電装置10によれば、定電流充電時間TCと定電圧充電時間TVを用いて判定値Jを求めることで、二次電池12の状態の変化に伴う判定値Jの変化を二次電池12の状態の変化に伴う定電流充電時間TCの変化に比べて大きくすることができ、二次電池12の状態を精度よく判定することができる。 (もっと読む)


【課題】電池の交換時期の精度の向上を図ることができる上に、製作費用の抑制を図ることができる電池寿命推定装置の提供。
【解決手段】本発明は、計数手段と、温度センサと、配分率算出手段と、寿命算出手段と、比較手段とを備えている。計数手段は、電池の使用開始から現在までの時間を計数する。温度センサは、電池の周囲の温度を検出する。配分率算出手段は、温度センサの検出温度に基づき、電池の使用開始から現在までの温度毎の使用時間の配分率をそれぞれ求める。寿命算出手段は、配分率算出手段で求めた配分率と、電池の温度毎に予め求めてある寿命時間とに基づき、電池の寿命時間を算出する。比較手段は、計数手段の計数時間を寿命算出手段が算出する寿命時間と比較し、計数時間が算出寿命時間以上になったときにその旨の出力信号を出力する。 (もっと読む)


【課題】バッテリの持続可能時間の予測のための計算量を削減する。
【解決手段】電池によって駆動される情報処理装置10であって、前記情報処理装置に対する負荷の大きさを示す値を記録する記録部と、前記記録部に記録された前記値に基づいて、前記負荷に関する下限の閾値を判定する判定部と、当該情報処理装置に対する前記負荷が前記下限の閾値未満となった場合に、プログラムごとに該プログラムの起動による前記負荷の増加量を記憶した記憶部を参照して、いずれかのプログラムを起動させる制御部と、前記値の変化の傾きに対応付けて関数記憶部が記憶する関数を用いて前記電池の持続可能時間を算出する算出部とを有する。 (もっと読む)


【課題】電源素子の形状や端子の位置にかかわらず、容易に行える作業で電源素子を保持させることができる電源素子保持器具を提供する。
【解決手段】保持器具1のベース板10には、電池パック800の前面802に対向する前方固定板21と、電池パック800の両側面803,804にそれぞれ対向するパッド31,41を支持する側方固定板35,45と、電池パック800の背面805に対向するパッド51を支持する背方固定板52とが固定されている。パッド41は、パッド31に対して遠近する方向に変位可能であり、パッド51は、前方固定板21に対して遠近する方向に変位可能である。ユーザは、電池パック800を前方固定板21とパッド51との間に挟み、パッド31とパッド41との間に挟むことにより、容易な作業で、電池パック800を保持器具1により保持させることができる。 (もっと読む)


【課題】二次電池の充電状態を高精度に算出する。
【解決手段】電池ECU12は、電流積算により第1SOCを算出する第1SOC算出部24と、電流履歴に基づきSOCを算出するA算出部28と、定電流での充電あるいは放電曲線を用いてSOCを算出するB算出部30を備える第2SOC算出部26を備える。補正部32は、第1SOCと第2SOCを用いて二次電池10のSOCを算出して車両ECU14に出力する。定電流での充放電時にはB算出部30を用いることでSOCの精度が確保される。 (もっと読む)


【課題】シャットダウンして保存された後にシャットダウンから復帰した場合、実際の残容量とのずれが少ない残容量を算出することが可能な残容量算出方法、パック電池の出荷前調整方法、残容量算出装置及びパック電池を提供する。
【解決手段】電源IC6と3.3V電源端子との間に接続されたMOSFET61をオフ状態にすることにより、RSOC(残容量比)を算出する制御部5が含まれる制御基板100がシャットダウンされる。制御基板100がシャットダウンから復帰した場合、最大セル電圧をOCV(開放端子電圧)として特定し、OCVの高/低とRSOCの大/小とを関連付ける一定の放電特性と照合して、放電特性を近似する二次曲線を特定し、特定した二次曲線が表す二次関数に対し、特定した最大セル電圧を代入してRSOCを算出する。 (もっと読む)


【課題】使用部品数を削減して全体としての構成を簡素化し、人的な作業負担を軽減することができる技術を提供する。
【解決手段】充電用にソーラーパネル(太陽光発電装置104)を用いた場合、充電用の電流値が定電流とならず不測に変動するが、状態観測装置100は、EDLC電流検出部116を用いて一定時間毎に充電用の電流値を測定し、その結果を用いて制御部112によりEDLC102の充電容量を正確に算出することができる。また、充電容量の算出結果を複数の充電サイクルで比較し、その変化からEDLC102の劣化の状態を判定したり、残り寿命を予測したりすることができる。 (もっと読む)


【課題】この発明は、開回路中ではなく、閉回路中にバッテリセルの充電状態を精度よく算出することを目的とする。
【解決手段】この発明は、1つ以上のバッテリセルを含むバッテリパックと、そのバッテリセルの状態を検出する検出回路とを備え、検出回路が、バッテリセルの温度を検出する温度検出手段と、バッテリセルに流れる電流を検出する電流検出手段と、バッテリセルの電圧を検出する電圧検出手段とを備えるとともに、演算回路を併設して備えるバッテリ状態監視装置において、バッテリセルの所定充電状態に相当する所定電圧を、バッテリセルの温度とバッテリセルの電流とに基づいて、温度二次式の指数関数と温度一次関数を含む所定の演算式を用いて算出し、バッテリセルの電圧と演算式を用いて算出した所定電圧とを比較してバッテリセルの所定充電状態を判定することを特徴とする。 (もっと読む)


【課題】電池の状態の判定精度を向上させる技術を提供する。
【解決手段】状態判定装置10は、定電流充電から定電圧充電に切り替わって充電される二次電池12の状態を判定する。状態判定装置10には、定電流充電時の基準電流値Ikより小さい第1の電流値Is、および第1の電流値Isより小さい第2の電流値Ieが定められており、定電圧充電時に二次電池12に流れる電流が第1の電流値Isから第2の電流値Ieに減少する判定時間に基づいて二次電池12の状態を判定する。計時された判定時間では、電池の状態による違いが顕著となり、電池の状態を精度よく判定することができる。 (もっと読む)


【課題】簡易な方法で電池の充電率(SOC)を得る。
【解決手段】電極体を内包したセルケース6の積層方向面の歪を検知することができる歪ゲージ9aと、歪ゲージ9aで検知される歪と二次電池1の充電率との関係を示す関係情報Fが記憶されているメモリ12と、歪ゲージ9aで実際に検知された歪と関係情報Fとを用いて、充電率を求める演算部CPU11と、を備えていることを特徴とする通電状態の差異の充電率も得ることができ、検知コストが抑制された、電気自動車に搭載できる二次電池システム。 (もっと読む)


【課題】精度が高く劣化判定の可能な、太陽光発電用バッテリーシステムとその状態検知装置を提供する。
【解決手段】本発明は、太陽電池パネルから供給されるエネルギーを充電する鉛バッテリーと補助バッテリーに充電して負荷に給電する太陽光発電用バッテリーシステムであって、太陽電池パネルからの電力の受け入れと、負荷への電力供給を従たるバッテリーが行い、その過不足を鉛バッテリーの充放電で補う構成とすることを特徴とする。 (もっと読む)


【課題】非線形領域を含む二次電池の内部状態の演算精度を高めることができる電池状態推定装置を提供することである。
【解決手段】二次電池の電流を、電流計測値として検出する電流検出手段と、二次電池の端子電圧を、電圧計測値として検出する電圧検出手段と、二次電池の電池モデルを定義し、電流計測値および電圧計測値を、電池モデルに基づく状態変数フィルタを用いて、状態量変換して変換状態量を算出し、変換状態量から、電池モデルに基づく二次電池の端子電圧を電圧推定値として推定する端子電圧推定手段と、電圧計測値と電圧推定値との差分がゼロに収束するように、二次電池のパラメータを同定する同定手段と、二次電池の電流―電圧と特性のうちの非線形領域の存在割合を検出する非線形領域検出手段とを備え、端子電圧推定手段は、存在割合に応じて、状態変数フィルタのカットオフ周波数を設定する。 (もっと読む)


【課題】複数の電池素子で構成される組電池の将来的な容量及び寿命を容易且つ高精度に予測することのできる方法及びシステムを提供すること。
【解決手段】
複数個の素子A1〜A12が並列接続されてなる素子ブロックB1〜B40を、直列に接続してなる組電池10の将来的な容量を予測算出する組電池容量予測方法で、組電池10において予め定められた期間に故障すると想定される素子の予測総数Nを設定し、設定された予測総数Nに基づき、各素子ブロックにおいて含まれ得る故障素子の組み合わせ数C(δ)、C(δ)を算出し、故障素子の組み合わせ数C(δ)を取りうる確率P(δ)と、容量Cap(δと、を乗算して和をとることで期待容量Eを算出し、算出された期待容量Eを組電池の予測容量として組電池の将来の稼働状態の正常性を判定する。 (もっと読む)


【課題】 高精度でバッテリの充電率の推定ができるバッテリの充電率推定装置を提供する。
【解決手段】バッテリの充電率推定装置は、充放電電流検出手段1と、端子電圧検出手段2と、電流積算法充電率SOCiを推定し、かつ検出手段1の検出精度情報を元に電流積算法充電率の分散を算出する電流積算充電率推定手段3と、充放電電流値と端子電圧値とに基づきバッテリ等価回路モデルを用いて推定した開放電圧値から開放電圧法充電率SOCvを推定し、かつ検出手段1,2の検出精度に関する情報を元に開放電圧法充電率の分散を算出する開放電圧法充電率推定手段4と、開放電圧法充電率と電流積算法充電率との差、電流積算法充電率の分散、開放電圧法充電率の分散に基づいて電流積算法充電率の推定誤差nを推定する誤差推定手段6と、電流積算法充電率と推定誤差とからバッテリの充電率SOCを求める充電率算出手段7と、を備える。 (もっと読む)


21 - 40 / 153