説明

Fターム[5J055CX24]の内容

電子的スイッチ (55,123) | 用途(負荷、信号の種類) (3,195) | 負荷・用途 (2,057) | 信号用、通信用 (591)

Fターム[5J055CX24]の下位に属するFターム

Fターム[5J055CX24]に分類される特許

21 - 40 / 524


【課題】貫通電流を少なくできる半導体装置を提供する。
【解決手段】データを出力する出力部を各々備えた複数の半導体チップと、出力部の各々と接続された配線と、配線を介して複数の半導体チップの各々からデータを受け付ける受付部と、を含み、出力部が順番に駆動する半導体装置にて、出力部の各々は、オン状態時の抵抗値を変更可能であり、自己の駆動開始時から自己の次に駆動を開始する出力部の駆動開始時の前のタイミングまでの第1期間の間は、オン状態時の抵抗値を第1抵抗値にしてデータを配線に出力し、第1期間が経過した時点から自己の駆動終了時までの第2期間の間は、オン状態時の抵抗値を第1抵抗値よりも大きい第2抵抗値にしてデータを配線に出力する。 (もっと読む)


【課題】より簡単な構成で波形歪みのエネルギーを消費させ、リンギングを確実に抑制できるリンギング抑制回路を提供する。
【解決手段】一対の信号線3P,3N間に、NチャネルMOSFET7を接続し、制御回路14は、伝送線路3を介して伝送される差動信号のレベルがハイからローに変化したことを検出すると、NチャネルMOSFET7を一定期間オンさせる。すなわち、差動信号のレベルが遷移する期間にNチャネルMOSFET7が導通することで信号線3P,3N間のインピーダンスを大きく低下させ、差動信号波形の歪みエネルギーを吸収させてリンギングの発生を確実に抑制する。 (もっと読む)


【課題】 2つの出力素子の入力が共にハイレベルになり次に電源オン状態に移行する際に動作を開始することができないとい問題を解決する。
【解決手段】 電源制御手段16は、スイッチングアンプ10が電源オフ状態に移行する場合に、スイッチSWがオフ状態になり、コンデンサC102を強制的に放電させ、第2電源電圧V2に対する基準電位V3を強制的に低下させる。基準電位V3に対するロジック電源電圧Vddは、基準電位V3と同じだけ低下していくので、基準電位V3から見たロジック電源電圧Vddは固定される。定電流回路は、第2電源電圧V2に対する基準電位V3の低下に伴い、定電流Iを減少させ、第1の電流I1および第2の電流I2を減少させる。従って、基準電位V3から見たロジック電源電圧Vddが低下しないうちに、第1の電流I1、第2の電流I2を減少させ、パルス発生手段の動作を正常な状態で終了できる。 (もっと読む)


【課題】動作モード切り換え時におけるノイズを抑制する。
【解決手段】差動入力バッファ1は、動作モードを通常状態又は省電力状態のいずれかに切り換える電源回路MN1,MN2と、ソースフォロア回路を構成する半導体素子MP1,MP3及びMP2,MP4のそれぞれの寄生容量の合計である第1の寄生容量に対応する第2の寄生容量を有する半導体素子MP7,MP8により構成されるダミー回路とを有し、動作モードの切り換え時に第1の寄生容量に起因して発生する電流の流通方向と、動作モードの切り換え時に第2の寄生容量に起因して発生する電流の流通方向とが共通の配線において相反する構成を有する。 (もっと読む)


【課題】良好な逆回復特性と良好なEMCとを同時に実現することが出来て、かつ、従来の半導体装置よりも安価である半導体装置及び電子機器を提供する。
【解決手段】半導体装置1は、FET3のソースとMOSFET4のドレインとが接続されるとともに、一端が、FET3のゲートに接続され、他端が、MOSFET4のソースに接続される抵抗Rgsと、アノードが、FET3のゲートに接続され、カソードが、MOSFET4ソースに接続されるダイオードD1とを備える。 (もっと読む)


【課題】スイッチポート切替時間が短く、かつ低消費電力、低面積を同時に満たす高周波スイッチモジュールを提供する。
【解決手段】デコーダ3は、前記スイッチポートを切替える制御信号CNTに応答し、スイッチ7を制御するためのスイッチ制御信号SWCNTを生成して、スイッチ切替タイミング検出器は、スイッチ制御信号SWCNTに応答し、スイッチ切替え検出信号t_swを生成し、周波数制御信号生成器は、スイッチ切替え検出信号t_swに応答し、周波数制御信号ICONT、CCONTを生成し、負電圧発生回路は、周波数制御信号ICONT、CCONTに応答し、前記負電圧発生回路内で生成したクロック信号の周波数を2つ以上のそれぞれ異なる周波数に切替つつ、負電圧出力信号NVG_OUTを生成し、スイッチ7は、スイッチ制御信号SWCNTと前記負電圧出力信号NVG_OUTに応答し、複数の高周波信号ポート間の経路を切替える。 (もっと読む)


【課題】クロックマルチプレクサを駆動する第1のクロック入力から第2のクロック入力への切換えにおいて起こるグリッチを低減する。
【解決手段】クロックマルチプレクサ116は、第1のクロック入力を受信し、クロック出力118を提供し、第1のクロック出力における低フェーズ入力レベルに応答してクロック出力における低フェーズ出力レベルを判定する。限定された期間、低フェーズ出力レベルは、第1のクロック入力信号のフェーズレベルに関わらず維持される。クロックマルチプレクサ116は、第2のクロック入力を受信し、第2のクロック入力信号における低フェーズ入力レベルを判定する。第2のクロック入力に応答してクロック出力118を提供することへの切換えは、第2のクロック入力信号における低フェーズ入力レベルの間に起こる。その後、クロックマルチプレクサ116の出力は第2のクロック信号のフェーズレベルに従う。 (もっと読む)


【課題】スイッチ用のトランジスタに発生する寄生ダイオードを介して内部に流入するESDによる負電流から内部回路を保護する。
【解決手段】第4nチャネルMOSFET(Mn4)は、ソース端子とバーグゲート端子間が接続されている。スイッチ素子は、第4nチャネルMOSFET(Mn4)のソース端子とグラウンド電位との間に接続され、第4nチャネルMOSFET(Mn4)のオフ時に第4nチャネルMOSFET(Mn4)のソース端子をグラウンド電位にする。保護回路40は、第4nチャネルMOSFET(Mn4)のソース端子と上記スイッチ素子の入力端子の接続点と、グラウンド電位との間に設けられ、静電気放電による第4nチャネルMOSFET(Mn4)のドレイン端子から流入する負電流をグラウンド電位に流す。 (もっと読む)


【課題】電子デバイスと、オーディオデバイスを制御するための複数の受動Spスイッチを有するオーディオアクセサリとを提供すること。
【解決手段】電子デバイスを制御するように適合されているシステムであって、システムは、電子デバイスに結合されているオーディオアクセサリを含み、オーディオアクセサリは、複数の抵抗型スイッチを有し、電子デバイスは、バイアス抵抗器とグラウンド接続とを介して抵抗型スイッチに電力を提供するように適合されているバイアス電圧供給源と、測定モジュールとを含み、測定モジュールは、バイアス電圧供給源と抵抗型スイッチとの間の接続上のバイアスポイントを監視することと、オーディオ出力によって引き起こされるグラウンドオフセット電圧を決定することと、グラウンドオフセット電圧を補償することと、スイッチのどれが係合しているかを決定することとを行うように適合されている。 (もっと読む)


【課題】出力バッファーの面積・体積・部品点数の増加を抑制するとともに、ドライブ能力を向上させることが可能な出力バッファー回路を提供する。
【解決手段】第一駆動信号LINを伝達する第一入力経路4a、第二駆動信号RINを伝達する第二入力経路4b、第一入力経路4aと対応する第一出力バッファー6a及び第二入力経路4bと対応する第二出力バッファー6bを備える出力バッファー回路1において、入力経路切り替え手段8が、ステレオモード及びモノラルモードのうち、モノラルモードでは、第一入力経路4aと第一出力バッファー6a及び第二出力バッファー6bとを電気的に接続させ、出力経路切り替え手段10が、第一出力バッファー6a及び第二出力バッファー6bと、第一入力経路4a及び第一出力バッファー6aと対応する第一負荷2aとを、電気的に接続させる。 (もっと読む)


【課題】マルチバンドパワーアンプへ接続される小型の高周波スイッチモジュールを構成する。
【解決手段】高周波スイッチモジュール10は、アンテナANTに共通端子PIC0が接続する第1スイッチ素子11と、マルチバンドパワーアンプ40に共通入力端子PICt0が接続する第2スイッチ素子30を備える。第2スイッチ素子30の個別出力端子PICt2は、第1のローパスフィルタ12を介して第1スイッチ素子11の個別端子PIC11に接続し、第2のローパスフィルタ13とハイパスフィルタ102の直列回路を介して第1スイッチ素子11の個別端子PIC12に接続する。第2スイッチ素子30の個別出力端子PICt1は位相回路101とSAWデュプレクサ14を介して第1スイッチ素子11の個別端子PIC13に接続し、位相回路101とSAWデュプレクサ15を介して第1スイッチ素子11の個別端子PIC14に接続する。 (もっと読む)


【課題】高周波信号の伝送経路におけるインピーダンス変動の変動を抑え、高周波信号の挿入損失を向上させることができるスイッチ回路を提供すること
【解決手段】本発明にかかるスイッチ回路10は、入力端子11と出力端子12との間において信号を伝達する第1の伝送路上に設けられたFET14と、入力端子13と出力端子12との間において信号を伝達する第2の伝送路上に設けられたFET15と、入力端子13とFET15との間に一端が第2の伝送路と接続され、他端がオープンスタブ17である第3の伝送路と、第3の伝送路上に設けられたFET16と、を備え、第1の伝送路上を信号が伝達される場合、FET14及びFET16がオン状態となり、FET15がオフ状態となるように制御されるものである。 (もっと読む)


【課題】端子切替時の歪みの増加を抑制した半導体スイッチ及び無線機器を提供する。
【解決手段】実施形態によれば、電源回路と、駆動回路と、スイッチ部と、補正回路と、を備えた半導体スイッチが供給される。前記電源回路は、電源電位と異なる第1の電位を生成する。前記駆動回路は、前記第1の電位と異なる第2の電位と前記第1の電位とが供給され、端子切替信号に基づいて前記第1の電位及び前記第2の電位の少なくとも一方を出力する。前記スイッチ部は、前記駆動回路の出力に応じて共通端子と高周波端子との接続を切り替える。前記補正回路は、前記端子切替信号の変化を検出し、前記第1の電位の極性と等しい極性の電荷を前記駆動回路に供給して前記第1の電位を補正する。 (もっと読む)


【課題】回路規模が小さく、かつ消費電力の小さい無線通信装置及び高周波スイッチ回路を提供する。
【解決手段】無線通信装置100は、共用アンテナ101と、整合回路110、120と、高周波スイッチ回路130と、充電電力受電回路140と、応答器150と、から構成される。高周波スイッチ回路130は、電界効果トランジスタ131、132と、検波回路と、を備える。電界効果トランジスタ131、132のソース端子は共通接続される。検波回路は共通接続点に接続され、電界効果トランジスタ131のドレイン端子から出力された高周波信号を検波し、共通接続点の電位を基準とした検波電圧を電界効果トランジスタ131、132のゲート端子に印加する。電界効果トランジスタ131、132のドレイン端子間のインピーダンスは検波電圧に従って変化する。 (もっと読む)


【課題】 選択する容量の数に関わらずにそのオン抵抗を一定に保つことができる可変インピーダンス装置及びそれを用いた無線システムを提供する。
【解決手段】 一対の入出力端子101、102と、一対の入出力端子間に並列に接続された複数の回路ブロックBL1〜BL4と、を備え、回路ブロックは、一対の入出力端子の一方に一端が接続された容量性回路要素C1〜C4と、容量性回路要素の他端と一対の入出力端子の他方との間に互い並列に接続された回路ブロックの数以上の数のスイッチ素子SW1−1〜SW4−4を備えるスイッチ回路SW1〜SW4と、を備える。 (もっと読む)


【課題】信号波形の変異を抑制すること。
【解決手段】第1のトランジスタT1は、信号S3に応答してオンオフし、オンしたトランジスタT1は外部端子P2に接続された伝送路27をプルダウンする。伝送路27のレベルは、トランジスタT1のゲートと外部端子P2とをACカップリングするキャパシタC1により、キャパシタC1の容量値に応じた傾きで立ち下がる。プルダウン回路44は、外部端子P2の電位に応じて、トランジスタT1のゲート電圧をプルダウンする。 (もっと読む)


【課題】消費電流の増加を抑制しつつ電源投入時にレベルシフタの状態を確定させる技術を提供する。
【解決手段】信号レベル変換部(11)と、安定化回路(12)とを具備するレベルシフト回路を構成する。安定化回路(12)は、第2電源電圧供給ノード(ND1)と接続ノード(ND2)との接続を制御する第1スイッチ(P3)と、接続ノード(ND2)電圧に応答して接地電圧供給ノード(GND)と出力ノード(ND3)との接続を制御する第2スイッチ(N3)とを備えることが好ましい。そして、第1スイッチ(P3)は、第2電源電圧(VDD)が、第1中間電圧を超えないときに、第2電源電圧供給ノード(ND1)と接続ノード(ND2)とを接続する。また、第2スイッチ(N3)は、第2電源電圧供給ノード(ND1)の電圧に応答して、出力ノード(ND3)と接地電圧供給ノード(GND)とを接続する。 (もっと読む)


【課題】単電源駆動で、歪が小さく、大振幅の信号出力電圧が得られるドライバ回路を提供する。
【解決手段】1は入力端子、2、3は出力端子、4は第1の反転型オペアンプ、5は第2の反転型オペアンプ、6は非反転型オペアンプ、7はトランス、8は正電源電圧VCC、9はアナロググランドAGND(VCC/2)、10はグランドGND(0V)を示す。第1の反転型のドライバ用オペアンプの出力を第2の反転型のドライバ用オペアンプと非反転型のドライバ用オペアンプで受け、それらの出力を差動構成とすることで、低電圧での単電源駆動でも大振幅で、歪の小さい出力信号電圧が得られる構成とした。 (もっと読む)


【課題】回路規模が小さく、出力トランジスタのしきい値電圧がばらついてもノイズを抑えつつターンオフ時間を短縮する。
【解決手段】駆動信号SdがLの時、トランジスタT1がオン、T2がオフしてVGS(T3)がほぼ電源電圧Vccに等しくなりトランジスタT3がオンする。駆動信号SdがHになるとトランジスタT1がオフ、T2がオンする。トランジスタT4がオンするので抵抗R2がバイパスされ、トランジスタT3のゲート電荷はトランジスタT4、T2を通して急速に放電する。VGS(T3)がVth(T4)+VDS(T2)よりも低下すると、トランジスタT4はオフとなり、以後はトランジスタT3のゲート電荷が抵抗R2とトランジスタT2を通して緩やかに放電する。トランジスタT3、T4のしきい値電圧は一致する傾向があるので、VGS(T3)がVTH(T3)に低下した時点でトランジスタT4をオフできる。 (もっと読む)


【課題】差動出力電流のグリッチを打ち消しつつ、電源およびグランドに発生したノイズを打ち消す。
【解決手段】スイッチトランジスタM、Mは、差動入力電圧Dip、Dimに基づいてスイッチング動作することで入力電流Iinを電流Ii1、Ii2に変換し、雑音電流発生回路1は、入力電流源2を介して流れる雑音電流を模擬したダミー電流Iを生成し、スイッチトランジスタM、Mは、差動入力電圧Dip、Dimに基づいてスイッチング動作することでダミー電流Iを電流Ii3、Ii4に変換し、電流Ii1、Ii2に逆相的に重畳する。 (もっと読む)


21 - 40 / 524