説明

半導体装置及びその製造方法

【課題】高周波帯域で動作する半導体装置の特性の低下を抑制しつつ、製造コストを低減できる半導体装置及びその製造方法を提供する。
【解決手段】本発明に係る半導体装置100は、電界効果型トランジスタと、ヘテロ接合バイポーラトランジスタと、ヘテロ接合バイポーラトランジスタのGaAsベース層7を用いて形成されたベースエピ抵抗素子28と、電界効果型トランジスタのInGaAsチャネル層4を用いて形成された配線部26と、配線部26とベースエピ抵抗素子28とを絶縁する高抵抗化領域27と、配線部26の水平方向の周囲を囲う絶縁性の素子分離領域24とを含む。また、ベースエピ抵抗素子28は、半絶縁性GaAs基板1の主面に垂直な方向から見て、配線部26と交差しているベースエピ抵抗素子領域29を有する。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、半導体装置及びその製造方法に関し、特にヘテロ接合バイポーラトランジスタと電界効果トランジスタとを備える半導体装置及びその製造方法に関する。
【背景技術】
【0002】
III−V族化合物半導体は、Si(シリコン)半導体に比べて電子移動度が高いという特徴を有する。これにより、III−V族化合物半導体は、高速動作及び高効率動作を要求されるデバイスに多用されている。なかでも、エミッタ−ベース間の接合にヘテロ接合を用いたヘテロ接合バイポーラトランジスタ(Heterojunction Bipolar Transistor:以下、HBTと記す)は、エミッタ層のバンドギャップがベース層のバンドギャップよりも広い。これにより、HBTは、高周波特性に優れ、かつ低歪みの信号増幅が可能で、かつ単一電源での使用ができる等の優れた特徴を持つ。よって、HBTは、携帯電話用のパワーアンプをはじめとした高周波帯域で動作する半導体部品として幅広く使用されるようになってきた。
【0003】
しかしながら、近年の携帯電話端末は、マルチバンド化、及び、より複雑な動作制御が求められる一方で、製造コストを抑えるための部品点数の削減が求められている。よって、携帯電話用の半導体部品は、これらの相反する要求を同時に満たさなければならない。
【0004】
この要求を実現するために、最近では、HBTと電界効果トランジスタ(Field Effect Transistor:以下、FETと記す)とを同一半導体チップ上に形成するBi−FETプロセス技術の研究開発が進められている。このBi−FETプロセス技術により、高周波信号の増幅用回路とスイッチング用回路とをワンチップで実現できる。
【0005】
さらに、マルチバンド化の進展に伴い、将来的には多バンド間の複雑なスイッチング機能をもワンチップで実現させるために、HBTとFETとに加え、ロジック回路等の制御回路部分についても同一チップ上に形成されるようになる見込みである。
【0006】
例えば、HBTと、制御回路等に用いることができる抵抗素子とを同一チップ上に形成する技術として、特許文献1に記載の技術がある。
【0007】
以下に、従来のBi−FETプロセスから想定される、HBTとFETとロジック回路とを同一チップ上に形成した半導体装置700について説明する。
【0008】
図7Aは、半導体装置700の平面図であり、図7Bは、図7AのC0−C1面における半導体装置700の断面図である。
【0009】
図7A及び図7Bに示すように、半導体装置700は、半絶縁性GaAs基板701と、HBT領域722と、FET領域723と、素子分離領域724と、ロジック回路領域725とを含む。
【0010】
HBT領域722は、半絶縁性GaAs基板701の上に形成される。このHBT領域722は、半絶縁性GaAs基板701側から以下に示す順番で形成される、GaAs/AlGaAs超格子層702と、AlGaAs障壁層703Aと、InGaAsチャネル層704と、AlGaAs障壁層703Bと、GaAsサブコレクタ兼キャップ層705と、コレクタ電極714と、第1配線層717と、第2配線層718とを含む。また、HBT領域722は、コレクタ電極714の間に形成されるベースメサ領域720を含む。
【0011】
ベースメサ領域720は、GaAsサブコレクタ兼キャップ層705の上に形成される。この、ベースメサ領域720は、GaAsサブコレクタ兼キャップ層705側から以下に示す順番で形成される、GaAsコレクタ層706と、GaAsベース層707と、InGaPエミッタ層708と、GaAsエミッタキャップ層709と、InGaAsエミッタコンタクト層710と、エミッタ電極716とを含む。また、ベースメサ領域720は、エミッタ電極716の間であり、かつGaAsベース層707の表面に形成されるベース電極715と、エミッタ電極716及びベース電極715の上に形成される第1配線層717とを含む。
【0012】
FET領域723は、GaAs/AlGaAs超格子層702と、AlGaAs障壁層703Aと、InGaAsチャネル層704と、AlGaAs障壁層703Bと、GaAsサブコレクタ兼キャップ層705と、ドレイン電極711と、ソース電極712と、ゲート電極713と、第1配線層717とを含む。
【0013】
ロジック回路領域725は、ベースエピ抵抗素子728と、ベースエピ抵抗素子728に接続されるコンタクト電極730と、第1配線層717と、第2配線層718と、エンハンスモードの電界効果トランジスタ(図示省略)とを含む。
【0014】
なお、HBT領域722と、FET領域723と、ロジック回路領域725との間には素子分離領域724が形成されている。この素子分離領域724により、それぞれの領域間は絶縁分離される。また素子分離領域724は、ロジック回路領域725内においてロジック回路を構成する各素子を絶縁分離するように適切な場所に配置されている。
【0015】
また、Bi−FETプロセスで形成されるデバイスの構造において、最下層の半絶縁性GaAs基板701に対するHBT及びFETの配置がポイントとなる。現在では半絶縁性GaAs基板701を下側とした場合の上層側にHBTを、下層側にFETを配置する構造がプロセス難易度の観点等から一般的となっている。
【0016】
また、従来のBi−FETプロセスを使用して、ロジック回路領域725を、HBT及びFETと同一チップ上に形成する際には、当該チップは、HBT及びFETデバイスと、それらに接続される第1配線層717及び第2配線層718と、HBTのベース層(GaAsベース層707)として使用されるエピ層を利用したベースエピ抵抗素子728とを含むことになる。
【0017】
さらに、ロジック回路領域725には、その構成上、非常に多くの配線及び抵抗素子等を配置する必要があるため、非常に密集したレイアウトになる。
【先行技術文献】
【特許文献】
【0018】
【特許文献1】特開平10−107042号公報
【発明の概要】
【発明が解決しようとする課題】
【0019】
しかしながら、ロジック回路領域725を形成する際に使用する第1配線層717及び第2配線層718は、前述のようにHBT及びFETデバイスへの接続に使用されている。よって、第1配線層717及び第2配線層718を通過するRF(Radio Frequency)信号の劣化を防ぐ為に、第1配線層717及び第2配線層718に膜厚の厚い金属を使う必要がある。ここで、膜厚の厚い金属配線は、パターン形成に対するマスクルールの制約(最小隣接間隔LA及びLBと最小幅)が厳しい。よって、半導体装置700では、第1配線層717及び第2配線層718を用いて配線を多く配置した場合にチップサイズが大きくなることにより、製造コストが増加してしまうという課題が生じる。
【0020】
また、ロジック回路領域725に含まれる抵抗素子として使用されるベースエピ抵抗素子728はシート抵抗が高くないため、各ベースエピ抵抗素子728のサイズが大きくなる。結果として、半導体装置700では、多数のベースエピ抵抗素子728を配置した場合にチップサイズが大きくなることにより、製造コストが増加してしまうという課題が生じる。
【0021】
一方で、上記課題を避けるためにベースエピ抵抗素子728に使用するベース層のシート抵抗を上げようとすると、同じ層を使用するHBTデバイスのRF特性が劣化してしまう。よって、ベースエピ抵抗素子728のシート抵抗を上げることはできない。
【0022】
例えば、ベースエピ抵抗素子728のシート抵抗を上げたために、HBTのhFE(直流電流増幅率)が低下することにより、RF特性のGainが劣化するなどの半導体装置の特性が低下してしまうという別の問題が発生してしまう。
【0023】
上記問題に鑑み、本発明は、高周波帯域で動作する半導体装置の特性の低下を抑制しつつ、製造コストを低減できる半導体装置及びその製造方法を提供することを目的とする。
【課題を解決するための手段】
【0024】
上記目的を達成するために、本発明に係る半導体装置は、半導体装置であって、半導体基板と、前記半導体基板上に形成された電界効果型トランジスタと、前記半導体基板上に形成されたヘテロ接合バイポーラトランジスタと、前記半導体基板上に形成され、前記ヘテロ接合バイポーラトランジスタのベース層又はサブコレクタ層を用いて形成された抵抗素子と、前記電界効果型トランジスタのチャネル層を用いて形成された配線部を含み、前記電界効果型トランジスタ、前記ヘテロ接合バイポーラトランジスタ及び前記抵抗素子に接続される配線層と、前記配線部と前記ベース層又は前記サブコレクタ層との間の活性層を高抵抗化することにより形成され、当該配線部と前記抵抗素子とを絶縁する高抵抗化領域と、前記半導体基板の主面に水平な方向において、前記配線部の周囲を囲う絶縁性の素子分離領域とを含み、前記抵抗素子は、前記半導体基板の主面に垂直な方向から見て、前記配線部と交差している交差領域を有する。
【0025】
この構成によれば、本発明に係る半導体装置は、従来における第1配線層と第2配線層とを用いた2層配線と同様の接続関係を、第1配線層とチャネル層を用いた配線部とを用いた2層配線で実現できる。ここで、チャネル層を用いた配線部は、最小線幅及び最小隣接間隔といったマスクルールの制約が、金属を用いた第1配線層及び第2配線層と比較して大幅に緩和される。これにより、本発明に係る半導体装置は、従来と比較して少ない面積に多くの配線を配置することができるので、省面積化に起因する製造コストを低減できる。
【0026】
さらに、本発明に係る半導体装置では、抵抗素子と配線部との垂直方向は、高抵抗領域により区画されている。これにより、抵抗素子と配線部との交差が可能な構造となっているため、引き回しの制約が増えることはない。
【0027】
さらに、第1配線層及び第2配線層には、Au等の貴金属が用いられることが多いが、これらの一部をチャネル層を用いた配線部に置き換えることにより、使用する貴金属の量を削減することができる。これにより、本発明に係る半導体装置は、製造コストを低減できる。
【0028】
さらに、本発明に係る半導体装置において、従来から用いられている第1配線層及び第2配線層もそのまま使用した場合には、配線レイアウトの自由度が大幅に広がる。これにより、本発明に係る半導体装置は、さらに省面積化を実現できるので、製造コストをさらに低減できる。
【0029】
また、前記半導体装置は、前記電界効果型トランジスタが形成される電界効果型トランジスタ領域と、前記ヘテロ接合バイポーラトランジスタが形成されるヘテロ接合バイポーラトランジスタ領域と、前記抵抗素子を含む制御回路が形成されるロジック回路領域とを含み、前記素子分離領域は、前記電界効果型トランジスタ領域、前記ヘテロ接合バイポーラトランジスタ領域、及び前記ロジック回路領域の境界に形成され、前記電界効果型トランジスタ領域と、前記ヘテロ接合バイポーラトランジスタ領域と、前記ロジック回路領域とを絶縁し、前記配線部は、前記ロジック回路領域に形成されていてもよい。
【0030】
この構成によれば、多数の配線及び抵抗素子が密集するロジック回路領域において、チャネル層を用いた配線部を使用することにより、より省面積化を実現できるので、より製造コストを低減できる。
【0031】
また、前記高抵抗化領域は、前記活性層に第1イオンがイオン注入されることにより高抵抗化された領域であってもよい。
【0032】
また、前記素子分離領域は、前記活性層の少なくとも一部及び前記チャネル層にイオン注入を行うことにより高抵抗化された領域であってもよい。
【0033】
この構成によれば、チャネル層を用いた配線部をより小さい最小線幅及び最小隣接間隔で形成することが可能となる。これにより、本発明に係る半導体装置は、より省面積化に起因する製造コストの低減を実現できる。
【0034】
また、前記交差領域は、前記ヘテロ接合バイポーラトランジスタに含まれる前記ベース層又は前記サブコレクタ層より抵抗値が高くてもよい。
【0035】
また、前記交差領域は、前記ベース層又は前記サブコレクタ層に前記第1イオンがイオン注入されることにより高抵抗化されていてもよい。
【0036】
また、前記抵抗素子に含まれる前記交差領域は、当該抵抗素子に含まれる当該交差領域以外の領域より抵抗値が高くてもよい。
【0037】
また、前記抵抗素子は、前記交差領域以外に、前記ヘテロ接合バイポーラトランジスタの前記ベース層又は前記サブコレクタ層より抵抗値が高い領域を含んでもよい。
【0038】
この構成によれば、高抵抗化領域を形成するためのイオン注入の条件を最適化することによって、ベース層又はサブコレクタ層のうち抵抗素子として用いる部分の抵抗値を、完全絶縁ではなく、ヘテロ接合バイポーラトランジスタ領域のベース層又はサブコレクタ層に対して数倍のシート抵抗値になるように調整することができる。これにより、抵抗素子のシート抵抗値を、製造工程を追加することなく増加できるので、抵抗素子の面積領域を縮小できる。よって、本発明に係る半導体装置は、さらに製造コストを低減につながる。
【0039】
また、本発明は、このような半導体装置として実現することができるだけでなく、このような半導体装置を製造する半導体装置の製造方法として実現することができる。
【発明の効果】
【0040】
以上より、本発明は、高周波帯域で動作する半導体装置の特性の低下を抑制しつつ、製造コストを低減できる半導体装置及びその製造方法を提供できる。
【図面の簡単な説明】
【0041】
【図1A】本発明の実施の形態1に係る半導体装置の平面図である。
【図1B】本発明の実施の形態1に係る半導体装置の断面図である。
【図2A】本発明の実施の形態1に係る半導体装置の製造工程における断面図である。
【図2B】本発明の実施の形態1に係る半導体装置の製造工程における断面図である。
【図2C】本発明の実施の形態1に係る半導体装置の製造工程における断面図である。
【図2D】本発明の実施の形態1に係る半導体装置の製造工程における断面図である。
【図2E】本発明の実施の形態1に係る半導体装置の製造工程における断面図である。
【図2F】本発明の実施の形態1に係る半導体装置の製造工程における断面図である。
【図3】本発明の実施の形態1及び実施の形態2に係る半導体装置と従来の半導体装置とのチップサイズを示す図である。
【図4A】本発明の実施の形態2に係る半導体装置の平面図である。
【図4B】本発明の実施の形態2に係る半導体装置の断面図である。
【図5A】本発明の実施の形態2に係る半導体装置の製造工程における断面図である。
【図5B】本発明の実施の形態2に係る半導体装置の製造工程における断面図である。
【図5C】本発明の実施の形態2に係る半導体装置の製造工程における断面図である。
【図5D】本発明の実施の形態2に係る半導体装置の製造工程における断面図である。
【図5E】本発明の実施の形態2に係る半導体装置の製造工程における断面図である。
【図5F】本発明の実施の形態2に係る半導体装置の製造工程における断面図である。
【図6A】本発明の実施の形態2に係る、イオン注入条件と、注入されたベース層のシート抵抗値及びチャネル層のシート抵抗値との関係を示すグラフである。
【図6B】本発明の実施の形態2に係る、イオン注入条件と、チャネル層とその上層との間のリーク電流との関係を示すグラフである。
【図7A】従来のBi−FETプロセスを用いた、半導体装置の平面図である。
【図7B】従来のBi−FETプロセスを用いた、半導体装置の断面図である。
【発明を実施するための形態】
【0042】
(実施の形態1)
本発明の実施の形態1に係る半導体装置100は、HBTと、FETと、HBTのベース層を使用するベースエピ抵抗素子を含むロジック回路が形成されるロジック回路領域とを含む半導体装置である。この半導体装置100は、ロジック回路領域の配線として、FETのチャネル層を用いた配線部を用いる。これにより、本発明の実施の形態1に係る半導体装置100は、高周波帯域で動作する半導体装置の特性の低下を抑制しつつ、製造コストを低減できる。
【0043】
以下、本発明の実施の形態1に係る半導体装置100について、図面を用いて詳細に説明する。
【0044】
図1Aは、本発明の実施の形態1に係る半導体装置100の平面図である。また、図1Bは、図1Aに示すA0−A1面における半導体装置100の断面図である。
【0045】
図1A及び図1Bに示すように、半導体装置100は、半絶縁性GaAs基板1と、第1配線層17と、第2配線層18と、HBT領域22と、FET領域23と、素子分離領域24と、ロジック回路領域25とを備える。
【0046】
半絶縁性GaAs基板1は、複数の半導体素子が形成される半導体基板である。
【0047】
HBT領域22、FET領域23、及びロジック回路領域25は、半絶縁性GaAs基板1上に形成される。また、HBT領域22はHBTが形成される領域であり、FET領域23はFETが形成される領域である。ここで、FET領域23に形成されるFETは、例えば、ヘテロ接合FET(Heterojunction Field Effect Transistor:HFET)である。
【0048】
ロジック回路領域25は、ベースエピ抵抗素子28とエンハンスモードの電界効果トランジスタ(図示省略)とを含む制御回路が形成される領域である。
【0049】
HBT領域22、FET領域23、及びロジック回路領域25は、半絶縁性GaAs基板1上に、下層側から、以下に示す順番で形成される、GaAs/AlGaAs超格子層2と、AlGaAs障壁層3Aと、InGaAsチャネル層4と、AlGaAs障壁層3Bと、GaAsサブコレクタ兼キャップ層5とを含む。
【0050】
また、HBT領域22は、GaAsサブコレクタ兼キャップ層5上に形成されるコレクタ電極14と、GaAsサブコレクタ兼キャップ層5上、かつコレクタ電極14の間に形成されるベースメサ領域20とを含む。
【0051】
ベースメサ領域20は、下層側から、以下に示す順番で形成される、GaAsコレクタ層6と、GaAsベース層7と、InGaPエミッタ層8と、GaAsエミッタキャップ層9と、InGaAsエミッタコンタクト層10と、エミッタ電極16とを含む。
【0052】
ここで、GaAsベース層7とInGaPエミッタ層8とは、InGaP/GaAsヘテロ接合を形成している。
【0053】
また、ベースメサ領域20は、GaAsベース層7上に形成されるベース電極15を備える。
【0054】
また、HBT領域22は、コレクタ電極14上及びエミッタ電極16上に形成される第1配線層17と、第1配線層17上に形成される第2配線層18とを含む。
【0055】
FET領域23は、ゲート掘り込み領域21と、ゲート電極13と、ソース電極12と、ドレイン電極11とを含む。
【0056】
ゲート掘り込み領域21は、GaAsサブコレクタ兼キャップ層5を除去された領域である。
【0057】
ゲート電極13は、ゲート掘り込み領域21のAlGaAs障壁層3B上に形成される。
【0058】
ソース電極12及びドレイン電極11は、GaAsサブコレクタ兼キャップ層5上に、ゲート電極13を挟むように形成される。
【0059】
また、ソース電極12及びドレイン電極11上には、当該ソース電極12及びドレイン電極11と電気的に接続される第1配線層17が形成される。
【0060】
ここで、ゲート電極13に印加される電圧がInGaAsチャネル層4を走行するキャリアに影響することにより、ドレイン電極11とソース電極12との間を流れる電流が制御される。
【0061】
なお、GaAs/AlGaAs超格子層2と、AlGaAs障壁層3A及び3Bと、InGaAsチャネル層4と、GaAsサブコレクタ兼キャップ層5と、GaAsコレクタ層6と、GaAsベース層7と、InGaPエミッタ層8と、GaAsエミッタキャップ層9と、InGaAsエミッタコンタクト層10とは、半導体基板(半絶縁性GaAs基板1)上に積層された複数の半導体層であり、活性層として機能する。
【0062】
素子分離領域24は、絶縁性の領域であり、HBT領域22とFET領域23とロジック回路領域25との境界に形成される。この素子分離領域24は、複数の半導体層にわたってイオン注入されることにより高抵抗化(絶縁化)されている。これにより、素子分離領域24は、HBT領域22とFET領域23とロジック回路領域25とを、それぞれ絶縁分離する。また素子分離領域24はロジック回路領域25内においてもロジック回路を構成する各素子を絶縁分離するため、適切な場所に配置されている。
【0063】
ロジック回路領域25は、配線部26と、高抵抗化領域27と、ベースエピ抵抗素子28と、コンタクト電極30と、チャネル配線接続電極31と、第1配線層17と、エンハンスモードの電界効果トランジスタ(図示省略)とを備える。
【0064】
配線部26は、InGaAsチャネル層4を用いて形成された配線である。また、この配線部26の水平方向(半絶縁性GaAs基板1の主面に対して水平な面方向)は、素子分離領域24により区画されている。具体的には、素子分離領域24は、水平方向において、配線部26の周囲を囲うように形成される。
【0065】
高抵抗化領域27は、配線部26上のGaAsサブコレクタ兼キャップ層5がイオン注入により高抵抗化された領域である。この高抵抗化領域27は、配線部26を垂直方向(半絶縁性GaAs基板1の主面に対して垂直な方向)に区画する。つまり、高抵抗化領域27は、配線部26と、当該配線部26の上に形成されるベースエピ抵抗素子28とを絶縁する。
【0066】
ベースエピ抵抗素子28は、HBTのベース層(GaAsベース層7)として使用されるエピ層を用いて形成された抵抗素子である。このベースエピ抵抗素子28は、ベースエピ抵抗素子領域29を含む。
【0067】
ベースエピ抵抗素子領域29は、ベースエピ抵抗素子28の領域のうち、高抵抗化領域27上に位置する領域である。言い換えると、ベースエピ抵抗素子領域29は、ベースエピ抵抗素子28の領域のうち、半絶縁性GaAs基板1の主面に垂直な方向から見て、配線部26と交差している領域である。つまり、ベースエピ抵抗素子28と配線部26とは立体的に交差している。
【0068】
このベースエピ抵抗素子領域29は、高抵抗化領域27を形成するイオン注入の際に、同時にイオン注入されることにより高抵抗化されており、HBT領域のGaAsベース層7、及びベースエピ抵抗素子28の他の領域よりも高いシート抵抗値を有する。例えば、ベースエピ抵抗素子領域29は、HBT領域のGaAsベース層7、及びベースエピ抵抗素子28の他の領域に対して数倍のシート抵抗値を有する。
【0069】
コンタクト電極30は、ベースエピ抵抗素子28の端部上に形成され、当該ベースエピ抵抗素子28と第1配線層17とを電気的に接続する。
【0070】
チャネル配線接続電極31は、GaAsサブコレクタ兼キャップ層5上に形成され、当該GaAsサブコレクタ兼キャップ層5及びAlGaAs障壁層3Aを介して、配線部26と電気的に接続される。また、チャネル配線接続電極31上には、当該チャネル配線接続電極31と電気的に接続される第1配線層17が形成される。
【0071】
このように、ロジック回路領域25には、配線部26、ベースエピ抵抗素子28、チャネル配線接続電極31、第1配線層17、及びエンハンスモードの電界効果トランジスタ(図示省略)等が多数密集して配置されている。
【0072】
次に、半導体装置100の製造方法を説明する。図2A〜図2Fは、本発明の実施の形態1に係る半導体装置100の製造工程における断面図である。
【0073】
最初に、半絶縁性GaAs基板1上に、下層より順に、GaAs/AlGaAs超格子層2と、AlGaAs障壁層3Aと、InGaAsチャネル層4と、AlGaAs障壁層3Bと、GaAsサブコレクタ兼キャップ層5と、GaAsコレクタ層6と、GaAsベース層7と、InGaPエミッタ層8と、GaAsエミッタキャップ層9と、InGaAsエミッタコンタクト層10とをエピタキシャル成長させることにより形成する(図2A)。
【0074】
次に、図2Aに示す複数の半導体層に対し、フォトリソグラフィー法を用いてレジストをパターンニングし、その後、レジスト開口部を、ドライエッチング法を用いてエッチングすることでエミッタメサ領域19を形成する。続いて、InGaAsチャネル層4を使用する配線部26を形成したい部分のうち、配線部26にコンタクトするチャネル配線接続電極31を形成する部分を除いた部分について、同様にレジストをパターンニングし、その後レジスト開口部に適切なイオン種を適切な注入条件で注入することで、配線部26を垂直方向に区画する高抵抗化領域27を形成する(図2B)。
【0075】
なお、本製造工程において、高抵抗化領域27を形成する際に使用するイオン種及び注入条件は、配線部26を形成する部分より上方の半導体層(GaAsサブコレクタ兼キャップ層5)が完全に絶縁化するイオン種及び注入条件に最適化されている。なお、このイオン注入の詳細な条件については後述する。
【0076】
次に、上記エミッタメサ領域19を形成したときと同様な方法で、ベースメサ領域20とベースエピ抵抗素子28とを形成する。なお、予め形成された高抵抗化領域27とベースエピ抵抗素子28とが重複する部分については、更にシート抵抗の高いベースエピ抵抗素子領域29として特別に明示している(図2C)。
【0077】
次に、素子間分離を行う場所以外をレジストで保護し、次に、適切な注入条件によりHe+イオンを注入することで高抵抗化した素子分離領域24を形成する。これにより、HBT領域22とFET領域23とロジック回路領域25とを区画するとともに、ロジック回路領域25内の各素子を区画する。また、InGaAsチャネル層4の一部が、水平方向を素子分離領域24に、また垂直方向を高抵抗化領域27によって区画される。これにより、InGaAsチャネル層4を使用する配線部26が形成される(図2D)。
【0078】
次に、絶縁膜を形成した後、エミッタ電極16、ベース電極15及びコレクタ電極14を形成する部分の絶縁膜、及びベース電極15を形成する部分のInGaPエミッタ層8を除去する。次に、当該絶縁膜を除去した部分に、InGaAsエミッタコンタクト層10にコンタクトするTi/Pt/Au等からなるエミッタ電極16と、GaAsベース層7にコンタクトするTi/Pt/Au等からなるベース電極15と、GaAsサブコレクタ兼キャップ層5にコンタクトするAuGe/Ni/Au等からなるコレクタ電極14とを順次形成する。
【0079】
次に、ドレイン電極11、ソース電極12及びチャネル配線接続電極31を形成する部分の絶縁膜を除去する。次に、当該絶縁膜を除去した部分に、GaAsサブコレクタ兼キャップ層5にコンタクトするAuGe/Ni/Au等からなるドレイン電極11、ソース電極12及びチャネル配線接続電極31を形成する。さらにゲート電極13を形成する部分の絶縁膜を除去したうえで、その部分のGaAsサブコレクタ兼キャップ層5を除去することによりゲート掘り込み領域21を形成する。次に、ゲート掘り込み領域21に、AlGaAs障壁層3BにコンタクトするTi/Al/Ti等からなるゲート電極13を形成する(図2E)。
【0080】
次に、図2Eに示す構成の上に絶縁膜を形成した後、形成している各電極へのコンタクト部分を開口して、その上に第1配線層17を形成する。
【0081】
次に、第1配線層17上に絶縁膜を形成した後、第1配線層17と第2配線層18とをコンタクトさせる場所の絶縁膜を除去する。次に、第1配線層17と接続させる部分に第2配線層18を、メッキ法等を用いて形成する(図2F)。
【0082】
最後に、図2Fに示す構造の上に最終保護膜を形成した後、各パッド及びスクライブライン部分の保護膜を除去する。
【0083】
以上の工程により、半導体装置100が形成される。
以上より、本発明の実施の形態1に係る半導体装置100及びその製造方法によれば、InGaAsチャネル層4を使用する配線部26の形成工程は、InGaAsチャネル層4の一部が、水平方向を素子分離領域24に、また垂直方向をイオン注入により形成される、配線部26を垂直方向に区画する高抵抗化領域27によって区画されて形成される。これにより、この配線部26のマスクルール(最小線幅及び最小隣接間隔)は、素子分離領域24を形成する際に使用するレジストのパターンニング限界寸法のみにより制約される。
【0084】
一方、厚い金属層を使用する第1配線層17及び第2配線層18については、膜厚の厚いレジストを使用しなければならないため、パターンニング限界寸法が広くなってしまううえに、後の工程のリフトオフ性を保障するための条件も制約条件に加えられる。
【0085】
よって、第1配線層17及び第2配線層18と比較して、InGaAsチャネル層4を使用する配線部26のほうが狭い領域に配線を多数配置できる。これにより、第1配線層17及び第2配線層18の一部を、InGaAsチャネル層4を使用する配線部26に置き換えることにより、チップサイズの省面積化を実現できる。よって、半導体装置100の製造コストを削減できる。また、これによりAu等の貴金属を使用する第1配線層17及び第2配線層18の面積が削減できるので、材料費の面からも製造コストを削減できる。
【0086】
なお、本発明の実施の形態1において、図2Dに記載されたベース電極15を形成する工程において、ベース電極15の最下層にPt等の半導体層に拡散する材料を採用したうえで、InGaPエミッタ層8を除去せずに、当該InGaPエミッタ層8上にベース電極15を形成してもよい。
【0087】
また、本発明の実施の形態1において、図2Dに記載されたコレクタ電極14、ソース電極12、ドレイン電極11及びチャネル配線接続電極31を形成する工程は、電極を形成する部分の層間膜(絶縁膜)除去工程を含めて1つのマスクで同時に実施するようにしてもよい。この同時形成により、本発明の実施の形態1に係る半導体装置100の製造方法において、従来の製造方法からの追加となるのは、イオン注入により、配線部26を垂直方向に区画する高抵抗化領域27を形成する1つの工程のみである。つまり、製造方法の追加に伴うコストアップは殆ど無い。
【0088】
以下、本発明の実施の形態1に係る半導体装置100のチップサイズの縮小効果について述べる。
【0089】
図3は、本発明の実施の形態1に係る半導体装置100と、後述する実施の形態2に係る半導体装置200と、従来の半導体装置とのチップサイズの比較例を示す図である。図3の横軸は、半導体装置の種別を示しており左が従来の半導体装置、真ん中が本発明の実施の形態1に係る半導体装置100、右が本発明の実施の形態2に係る半導体装置200を示している。また、図3の縦軸は、従来の半導体装置のチップサイズを100とした場合の、各半導体装置のチップサイズを示している。
【0090】
なお、図3に示すチップサイズは、ある回路構成をもとに、本発明を適用した場合を示すものであり、チップサイズの数値はあくまで参考値であり、具体的なチップサイズは、回路構成によって異なる。
【0091】
本発明の実施の形態1に係る半導体装置100は、ロジック回路領域25に、ベースエピ抵抗素子28とInGaAsチャネル層4を使用した配線部26とが形成され、しかもそれらが一部交差した領域を有して形成されていることにより、図3に示すように、同じ回路構成を保持しつつも、大幅にチップサイズが削減できていることが分かる。
【0092】
以上のことから、本発明の実施の形態1に係る半導体装置100は、高周波帯域で動作する半導体装置の特性の低下を抑制しつつ、省面積化及び材料費削減に起因する製造コストの低減を実現できる。
【0093】
(実施の形態2)
本発明の実施の形態2に係る半導体装置200は、上述した実施の形態1に係る半導体装置100の変形例である。この半導体装置200は、ベースエピ抵抗素子28のInGaAsチャネル層4を使用する配線部26と交差する部分だけでなく、ベースエピ抵抗素子28の全ての領域が、InGaAsチャネル層4を垂直方向に区画する高抵抗化領域27を形成する際に、同時にイオン注入されたベースエピ抵抗素子領域29である。これにより、本発明の実施の形態2に係る半導体装置200は、ベースエピ抵抗素子28の抵抗として使用する層のシート抵抗を上昇できるので、ベースエピ抵抗素子28を省面積化できる。これにより、本発明の実施の形態2に係る半導体装置200は、さらに、製造コストを低減できる。
【0094】
以下、本発明の実施の形態2に係る半導体装置200について、図面を用いて詳細に説明する。
【0095】
図4Aは、本発明の実施の形態2に係る半導体装置200の平面図である。また、図4Bは、図4Aに示すB0−B1面における半導体装置200の断面図である。
【0096】
図4A及び図4Bに示すように、半導体装置200は、半絶縁性GaAs基板1と、ドレイン電極11と、ソース電極12と、ゲート電極13と、コレクタ電極14と、ベース電極15と、エミッタ電極16と、第1配線層17と、第2配線層18と、HBT領域22と、FET領域23と、素子分離領域24と、ロジック回路領域25と、InGaAsチャネル層4を使用する配線部26と、イオン注入により形成され、配線部26を垂直方向に区画する高抵抗化領域27と、シート抵抗の高いベースエピ抵抗素子領域29と、チャネル配線接続電極31とを備える。
【0097】
なお、図4A及び図4Bに示す半導体装置200は、図1A及び図1Bに示す半導体装置100と比較して、ベースエピ抵抗素子28の全てに配線部26を垂直方向に区画するためのイオン注入が施されている点のみが異なる。つまり、半導体装置200には、通常のベースエピ抵抗素子28が存在せず、全てが更にシート抵抗の高いベースエピ抵抗素子領域29となっている。また、図1A及び図1Bに示す半導体装置100と同じ点は説明を省略し、以下、異なる点のみ説明する。
【0098】
なお、本発明においては、ロジック回路領域25及びその他の領域を問わず、チップ上に形成される全てのベースエピ抵抗素子28に対し、配線部26を垂直方向に区画する高抵抗化領域27を形成する際のイオン注入が同時に施されている。そのため、ベースエピ抵抗素子の全てがシート抵抗の高いベースエピ抵抗素子領域29となっている。これにより、図1A及び図1Bに示したベースエピ抵抗素子28と比較して、図4A及び図4Bに示すベースエピ抵抗素子は、同一の抵抗値を省面積で実現できる。これにより、本発明の実施の形態2に係る半導体装置200は、実施の形態1に係る半導体装置100よりもさらに省面積化を実現できるので、さらに製造コストを削減できる。
【0099】
なお、ここでは、ベースエピ抵抗素子28の全ての領域がシート抵抗の高いベースエピ抵抗素子領域29となる例を示すが、ベースエピ抵抗素子28は、高抵抗化されていない領域を含んでもよい。
【0100】
次に、図4A及び図4Bに記載された半導体装置200の製造方法を説明する。図5A〜図5Fは、本発明の実施の形態2に係る半導体装置200の製造工程における断面図である。
【0101】
最初に、半絶縁性GaAs基板1上に、下層より順に、GaAs/AlGaAs超格子層2と、AlGaAs障壁層3Aと、InGaAsチャネル層4と、AlGaAs障壁層3Bと、GaAsサブコレクタ兼キャップ層5と、GaAsコレクタ層6と、GaAsベース層7と、InGaPエミッタ層8と、GaAsエミッタキャップ層9と、InGaAsエミッタコンタクト層10とをエピタキシャル成長させることにより形成する(図5A)。
【0102】
次に、図5Aに示す複数の半導体層に対し、フォトリソグラフィー法を用いてレジストをパターンニングし、その後、レジスト開口部を、ドライエッチング法を用いてエッチングすることでエミッタメサ領域19を形成する。続いて、InGaAsチャネル層4を使用する配線部26を形成したい部分のうち、配線部26にコンタクトするチャネル配線接続電極31を形成する部分を除いた部分について、同様にレジストをパターンニングし、その後レジスト開口部に適切なイオン種を適切な注入条件で注入することで、配線部26を垂直方向に区画する高抵抗化領域27を形成する(図5B)。
【0103】
なお、本製造工程において、高抵抗化領域27を形成する際に使用するイオン種及び注入条件は、配線部26を形成する部分より上方の半導体層(GaAsサブコレクタ兼キャップ層5)が完全に絶縁化するイオン種及び注入条件に最適化されている。
【0104】
次に、上記エミッタメサ領域19を形成したときと同様な方法で、ベースメサ領域20とベースエピ抵抗素子領域29とを形成する。なお、予め形成された高抵抗化領域27がすべてのベースエピ抵抗素子に対して重複しているため、通常のベースエピ抵抗素子28として示される部分は存在しない(図5C)。
【0105】
次に、素子間分離を行う場所以外をレジストで保護し、次に、適切な注入条件によりHe+イオンを注入することで高抵抗化した素子分離領域24を形成する。これにより、HBT領域22とFET領域23とロジック回路領域25とを区画するとともに、ロジック回路領域25内の各素子を区画する。また、InGaAsチャネル層4の一部が、水平方向を素子分離領域24に、また垂直方向を高抵抗化領域27によって区画される。これにより、InGaAsチャネル層4を使用する配線部26が形成される(図5D)。
【0106】
次に、絶縁膜を形成した後、エミッタ電極16、ベース電極15及びコレクタ電極14を形成する部分の絶縁膜、及びベース電極15を形成する部分のInGaPエミッタ層8を除去する。次に、当該絶縁膜を除去した部分に、InGaAsエミッタコンタクト層10にコンタクトするTi/Pt/Au等からなるエミッタ電極16と、GaAsベース層7にコンタクトするTi/Pt/Au等からなるベース電極15と、GaAsサブコレクタ兼キャップ層5にコンタクトするAuGe/Ni/Au等からなるコレクタ電極14とを順次形成する。
【0107】
次に、ドレイン電極11、ソース電極12及びチャネル配線接続電極31を形成する部分の絶縁膜を除去する。次に、当該絶縁膜を除去した部分に、GaAsサブコレクタ兼キャップ層5にコンタクトするAuGe/Ni/Au等からなるドレイン電極11、ソース電極12及びチャネル配線接続電極31を形成する。さらにゲート電極13を形成する部分の絶縁膜を除去したうえで、その部分のGaAsサブコレクタ兼キャップ層5を除去することによりゲート掘り込み領域21を形成する。次に、ゲート掘り込み領域21に、AlGaAs障壁層3BにコンタクトするTi/Al/Ti等からなるゲート電極13を形成する(図5E)。
【0108】
次に、図5Eに示す構成の上に絶縁膜を形成した後、形成している各電極へのコンタクト部分を開口して、その上に第1配線層17を形成する。
【0109】
次に、第1配線層17上に絶縁膜を形成した後、第1配線層17と第2配線層18とをコンタクトさせる場所の絶縁膜を除去する。次に、第1配線層17と接続させる部分に第2配線層18を、メッキ法等を用いて形成する(図5F)。
【0110】
最後に、図2Fに示す構造の上に最終保護膜を形成した後、各パッド及びスクライブライン部分の保護膜を除去する。
【0111】
以上の工程により、半導体装置200が形成される。
以下、本発明の実施の形態1及び2において、高抵抗化領域27を形成する際に使用するイオン注入のイオン種及び注入条件について説明する。
【0112】
図6Aは、イオン注入条件と、イオン注入されたGaAsベース層7及びInGaAsチャネル層4のシート抵抗とを示すグラフである。また、図6Bは、イオン注入条件と、InGaAsチャネル層4と上層(GaAsベース層7)との間のリーク電流とを示すグラフである。また、図6A及び図6Bの横軸はイオン注入の注入エネルギーである。また、図6Aの縦軸はシート抵抗値であり、図6Bの縦軸はリーク電流である。
【0113】
ここで、上述した本発明の実施の形態1及び2に係る半導体装置100及び200では、高抵抗化領域27を形成する際に使用するイオン注入のイオン種及び注入条件は、図6A及び図6Bに例示する、イオン注入されたGaAsベース層7のシート抵抗51及び52、InGaAsチャネル層4のシート抵抗53及び54、InGaAsチャネル層4とその上層の間のリーク電流55及び56等を勘案して条件が最適化されている。
【0114】
具体的には、第1の条件として、InGaAsチャネル層4とその上層との間のリーク電流55及び56は、十分に小さい必要がある。つまり、高抵抗化領域27が絶縁化される必要がある。例えば、このリーク電流55及び56を0.01以下にしたい場合には、図6Bに示すように、イオン種Aをイオン注入加速度エネルギー50〜150keVの条件でイオン注入すればよい。
【0115】
また、第2の条件として、InGaAsチャネル層4のシート抵抗値は、イオン注入しない場合から変化しないことが好ましい。よって、図6Aに示すように、イオン種Aをイオン注入加速度エネルギー125keV以下の条件でイオン注入する、又はイオン種Bをイオン注入すればよい。
【0116】
また、第3の条件として、GaAsベース層7(ベースエピ抵抗素子領域29)のシート抵抗値を所望の高抵抗値にする必要がある。よって、上記条件1及び2を満たす範囲内で、所望のシート抵抗値を実現できる条件を選択すればよい。この例では、イオン種Aをイオン注入加速度エネルギー50〜125keVの条件のうち、所望のシート抵抗値を実現できる条件を選択すればよい。
【0117】
例えば、ベースエピ抵抗素子領域29のシート抵抗値をHBT領域22のGaAsベース層7の10倍程度にする場合には、イオン種Aをイオン注入加速度エネルギー125keV程度の条件でイオン注入すればよい。
【0118】
なお、高抵抗化領域27を形成する際に複数のイオン種をイオン注入してもよい。
以上のようにして形成された本発明の実施の形態2に係る半導体装置200では、ロジック回路領域25及びその他の領域を問わず、チップ上全てのベースエピ抵抗素子に対して、配線部26を垂直方向に区画する高抵抗化領域27を形成する際のイオン注入が施されている。これにより、全てのベースエピ抵抗素子がシート抵抗の高いベースエピ抵抗素子領域29となっている。よって、半導体装置200は、同一の抵抗値をより省面積で実現できる。
【0119】
以下、本発明の実施の形態2に係る半導体装置200のチップサイズの縮小効果について述べる。
【0120】
図3に、本発明の実施の形態1及び実施の形態2に係る半導体装置100及び200と従来の半導体装置とのチップサイズの比較例を示している。図3に示すように、本発明の実施の形態2に係る半導体装置200は、実施の形態1に係る半導体装置100よりもさらにチップサイズの省面積化が可能であることが分かる。
【0121】
さらに、図6A及び図6Bに示す関係を参考にしてベースエピ抵抗素子のシート抵抗を調整することができる。よって、特性、制御性及び製造コスト等を勘案した上で、複数のイオン種を異なる条件で打ち込むなどより、ベースエピ抵抗素子のシート抵抗が高抵抗になるような最適な条件を使用することにより、更なる省面積化を図ることも可能である。
【0122】
さらに、このベースエピ抵抗素子領域29のシート抵抗増大は、当然ながらHBTデバイスとして使用する部分のGaAsベース層7にはまったく影響を与えない。よって、HBTデバイスの高周波特性が損なわれることはまったく無い。
【0123】
また、図3に示すように、ロジック回路領域25に限らず、チップ上全てのベースエピ抵抗素子に対して、配線部26を垂直方向に区画する高抵抗化領域27を形成する際のイオン注入を施すことにより、さらに、チップサイズを縮小できる。
【0124】
以上のことから、本発明の実施の形態2に係る半導体装置200は、省面積化に起因する製造コスト低減を実現できる。
【0125】
以上、本発明に係る半導体装置及びその製造方法について、実施の形態1及び2に基づいて説明したが、本発明は、これらの実施の形態1及び2に限定されるものではない。本発明の趣旨を逸脱しない限り、当業者が思いつく各種変形を本実施の形態に施したものや、異なる実施の形態における構成要素を任意に組み合わせて構築される形態も、本発明の範囲内に含まれる。
【0126】
例えば、上記で示した各構成要素の材料は一例であり、同様の効果を得ることができる他の材料を用いてもよい。
【0127】
また、上記各図において、各構成要素の角部及び辺を直線的に記載しているが、製造上の理由により、角部及び辺が丸みをおびたものも本発明に含まれる。
【0128】
また、上記説明では、HBTのベース層(GaAsベース層7)として使用されるエピ層を用いて形成されたベースエピ抵抗素子28を備える半導体装置100及び200について説明したが、本発明は、HBTのサブコレクタ層(GaAsサブコレクタ兼キャップ層5)として使用されるエピ層を用いて形成されたコレクタエピ抵抗素子を備える半導体装置にも同様に適用できる。
【0129】
この場合、当該コレクタエピ抵抗素子と配線部26とを垂直方向に絶縁する高抵抗化領域は、当該コレクタエピ抵抗素子と配線部26との間の活性層であるGaAsサブコレクタ兼キャップ層5の下層側の一部及びAlGaAs障壁層3Bのうち少なくとも一方をイオン注入により高抵抗化した領域となる。
【0130】
なお、一般に、ベースエピ抵抗素子28のシート抵抗値は数百Ω/□であり、コレクタエピ抵抗素子のシート抵抗値は数十Ω/□である。このように、ベースエピ抵抗素子28のほうが、コレクタエピ抵抗素子よりシート抵抗値が高い。また、コレクタエピ抵抗素子を用いる場合に比べ、ベースエピ抵抗素子28を用いる場合のほうが、高抵抗化領域27の形成が容易である。これらの理由から、ベースエピ抵抗素子28を備える半導体装置に本発明を適用することがより好ましい。
【産業上の利用可能性】
【0131】
本発明は、高周波帯域で動作する半導体装置及びその製造方法に有用であり、特に電界効果トランジスタをスイッチング素子として使用した半導体装置に最適である。
【符号の説明】
【0132】
1、701 半絶縁性GaAs基板
2、702 GaAs/AlGaAs超格子層
3A、3B、703A、703B AlGaAs障壁層
4、704 InGaAsチャネル層
5、705 GaAsサブコレクタ兼キャップ層
6、706 GaAsコレクタ層
7、707 GaAsベース層
8、708 InGaPエミッタ層
9、709 GaAsエミッタキャップ層
10、710 InGaAsエミッタコンタクト層
11、711 ドレイン電極
12、712 ソース電極
13、713 ゲート電極
14、714 コレクタ電極
15、715 ベース電極
16、716 エミッタ電極
17、717 第1配線層
18、718 第2配線層
19 エミッタメサ領域
20、720 ベースメサ領域
21 ゲート掘り込み領域
22、722 HBT領域
23、723 FET領域
24、724 素子分離領域
25、725 ロジック回路領域
26 配線部
27 高抵抗化領域
28、728 ベースエピ抵抗素子
29 ベースエピ抵抗素子領域
30、730 コンタクト電極
31 チャネル配線接続電極
51、52、53、54 シート抵抗
55、56 リーク電流
100、200、700 半導体装置

【特許請求の範囲】
【請求項1】
半導体装置であって、
半導体基板と、
前記半導体基板上に形成された電界効果型トランジスタと、
前記半導体基板上に形成されたヘテロ接合バイポーラトランジスタと、
前記半導体基板上に形成され、前記ヘテロ接合バイポーラトランジスタのベース層又はサブコレクタ層を用いて形成された抵抗素子と、
前記電界効果型トランジスタのチャネル層を用いて形成された配線部を含み、前記電界効果型トランジスタ、前記ヘテロ接合バイポーラトランジスタ及び前記抵抗素子に接続される配線層と、
前記配線部と前記ベース層又は前記サブコレクタ層との間の活性層を高抵抗化することにより形成され、当該配線部と前記抵抗素子とを絶縁する高抵抗化領域と、
前記半導体基板の主面に水平な方向において、前記配線部の周囲を囲う絶縁性の素子分離領域とを含み、
前記抵抗素子は、前記半導体基板の主面に垂直な方向から見て、前記配線部と交差している交差領域を有する
半導体装置。
【請求項2】
前記半導体装置は、
前記電界効果型トランジスタが形成される電界効果型トランジスタ領域と、
前記ヘテロ接合バイポーラトランジスタが形成されるヘテロ接合バイポーラトランジスタ領域と、
前記抵抗素子を含む制御回路が形成されるロジック回路領域とを含み、
前記素子分離領域は、前記電界効果型トランジスタ領域、前記ヘテロ接合バイポーラトランジスタ領域、及び前記ロジック回路領域の境界に形成され、前記電界効果型トランジスタ領域と、前記ヘテロ接合バイポーラトランジスタ領域と、前記ロジック回路領域とを絶縁し、
前記配線部は、前記ロジック回路領域に形成されている
請求項1記載の半導体装置。
【請求項3】
前記高抵抗化領域は、前記活性層に第1イオンがイオン注入されることにより高抵抗化された領域である
請求項1又は2記載の半導体装置。
【請求項4】
前記素子分離領域は、前記活性層の少なくとも一部及び前記チャネル層にイオン注入を行うことにより高抵抗化された領域である
請求項3記載の半導体装置。
【請求項5】
前記交差領域は、前記ヘテロ接合バイポーラトランジスタに含まれる前記ベース層又は前記サブコレクタ層より抵抗値が高い
請求項3又は4記載の半導体装置。
【請求項6】
前記交差領域は、前記ベース層又は前記サブコレクタ層に前記第1イオンがイオン注入されることにより高抵抗化されている
請求項5記載の半導体装置。
【請求項7】
前記抵抗素子に含まれる前記交差領域は、当該抵抗素子に含まれる当該交差領域以外の領域より抵抗値が高い
請求項6記載の半導体装置。
【請求項8】
前記抵抗素子は、前記交差領域以外に、前記ヘテロ接合バイポーラトランジスタの前記ベース層又は前記サブコレクタ層より抵抗値が高い領域を含む
請求項6記載の半導体装置。
【請求項9】
半導体装置の製造方法であって、
半導体基板上に電界効果型トランジスタを形成する電界効果型トランジスタ形成ステップと、
前記半導体基板上にヘテロ接合バイポーラトランジスタを形成するヘテロ接合バイポーラトランジスタ形成ステップと、
前記半導体基板上に、前記ヘテロ接合バイポーラトランジスタのベース層又はサブコレクタ層を用いた抵抗素子を形成する抵抗素子形成ステップと、
前記電界効果型トランジスタのチャネル層を用いて形成された配線部を含み、前記電界効果型トランジスタ、前記ヘテロ接合バイポーラトランジスタ及び前記抵抗素子に接続される配線層を形成する配線層形成ステップと、
前記配線部と前記ベース層又は前記サブコレクタ層との間の活性層を高抵抗化することにより、当該配線部と前記抵抗素子とを絶縁する高抵抗化領域を形成する高抵抗化領域形成ステップと、
前記半導体基板の主面に水平な方向において、前記配線部の周囲を囲う素子分離領域を形成する素子分離領域形成ステップとを含み、
前記抵抗素子は、前記半導体基板の主面に垂直な方向から見て、前記配線部と交差している交差領域を有する
半導体装置の製造方法。
【請求項10】
前記高抵抗化領域形成ステップでは、前記活性層に第1イオンをイオン注入することにより前記高抵抗化領域を形成する
請求項9記載の半導体装置の製造方法。
【請求項11】
前記高抵抗化領域形成ステップでは、前記活性層と前記ベース層又は前記サブコレクタ層とに同時に前記第1イオンをイオン注入することにより、前記高抵抗化領域を形成するとともに、前記ヘテロ接合バイポーラトランジスタの前記ベース層又は前記サブコレクタ層より抵抗値が高い前記交差領域を形成する
請求項10記載の半導体装置の製造方法。
【請求項12】
前記高抵抗化領域形成ステップでは、前記活性層と前記ベース層又は前記サブコレクタ層とに同時に前記第1イオンをイオン注入することにより、さらに、前記抵抗素子に含まれる領域のうち前記交差領域以外の領域の抵抗値を、前記ヘテロ接合バイポーラトランジスタの前記ベース層又は前記サブコレクタ層の抵抗値より高くする
請求項11記載の半導体装置の製造方法。

【図1A】
image rotate

【図1B】
image rotate

【図2A】
image rotate

【図2B】
image rotate

【図2C】
image rotate

【図2D】
image rotate

【図2E】
image rotate

【図2F】
image rotate

【図3】
image rotate

【図4A】
image rotate

【図4B】
image rotate

【図5A】
image rotate

【図5B】
image rotate

【図5C】
image rotate

【図5D】
image rotate

【図5E】
image rotate

【図5F】
image rotate

【図6A】
image rotate

【図6B】
image rotate

【図7A】
image rotate

【図7B】
image rotate


【公開番号】特開2010−267793(P2010−267793A)
【公開日】平成22年11月25日(2010.11.25)
【国際特許分類】
【出願番号】特願2009−117733(P2009−117733)
【出願日】平成21年5月14日(2009.5.14)
【出願人】(000005821)パナソニック株式会社 (73,050)
【Fターム(参考)】