説明

Fターム[5F003BE90]の内容

バイポーラトランジスタ (11,930) | エミッタ (1,226) | 形状、段付エミッタ、エミッタメサ (391)

Fターム[5F003BE90]に分類される特許

21 - 40 / 391


【課題】表面欠陥の発生を低減できて積層欠陥の発生を抑制でき、オン電圧ドリフトを抑制できるSiCバイポーラ半導体素子を提供する。
【解決手段】このSiC pinダイオード20は、六方晶構造の炭化珪素半導体で作製され、メサ状の半導体層31が六角柱形状で6つの側面(メサ面)31Aをすべて{0m−m0}面(m,nは整数)とした。これにより、メサ面31Aに対する〈11−20〉方向のバーガーズベクトルBV1,BV2の角度θ1,θ2(図4)が、{11−20}面の素子表面(メサ面)に対するバーガーズベクトルBV101,BV102の角度θ101,θ102(図12)に比べて小さくなると共に表面欠陥が発生するのに必要なバーガーズベクトルBV1,BV2の長さが長くなる。これにより、メサ面31Aに表面欠陥SDが入り難くなり、メサ状の半導体層31の各メサ面31Aでの表面欠陥を低減できて、積層欠陥の発生を抑制できる。 (もっと読む)


【課題】配管パージ等の作業を行うことなく、電気的特性等に影響を与える残留したTeやSeのエピタキシャル層中への混入を防止できるトランジスタ用エピタキシャルウェハを提供する。
【解決手段】基板100と化合物半導体層200とコンタクト層300とを有し、コンタクト層300は、n型不純物としてTe又はSeがドーピングされたIn組成比xが0.3≦x≦0.6で一定のn型InGaAs層からなり、n型InGaAs層は、n型不純物濃度が1.0×1019cm-3以上5.0×1019cm-3以下で、且つ、炭素濃度が1.0×1016cm-3以上3.0×1018cm-3以下であり、化合物半導体層200は、バッファ層400を備え、バッファ層400は、アンドープAlAs層からなる第1バッファ層401と、Al組成比yが0<y<1のアンドープAlGaAs層からなる第2バッファ層402とからなるものである。 (もっと読む)


【課題】電流利得や電流利得遮断周波数などの他の素子性能を劣化させることなく、ヘテロ接合バイポーラトランジスタのオン電圧が効果的に低減できるようにする。
【解決手段】基板101の上に、サブコレクタ層102、コレクタ層103、ベース層104、第1エミッタ層105、第2エミッタ層106、および、キャップ層107が順次積層されており、第2エミッタ層106は、第1エミッタ層105に対してウェットエッチング法により選択的に除去される半導体材料によって形成され、かつ、第2エミッタ層106を構成する半導体が不純物添加によって縮退している。加えて、このHBTの第1エミッタ層105は、ベース層104の側に配置されて不純物が添加された第1半導体層151と、第2エミッタ層106の側に第1半導体層151に接して配置されて不純物が無添加の第2半導体層152とから構成されている。 (もっと読む)


【課題】表面欠陥を低減でき、オン電圧ドリフトを抑制できるバイポーラ半導体素子を提供する。
【解決手段】このSiC GTOによれば、メサ状のp型アノードエミッタ層5の長側面5Bが延在している方向を、〈11−20〉方向としたオフ方向から角度φ=60°だけ傾斜させた方向とした。これにより、長側面5Bは、{01−10}面となり、{11−20}面である短側面5Cに比べて、表面欠陥が入りにくくなる。また、長側面5Bの延在方向を、上記オフ方向から角度φ=60°だけ傾斜させたことで、長側面5Bの延在方向とオフ方向とが一致している場合(φ=0°)に比べて、メサ状のp型アノードエミッタ層5の長側面5Bに現れる{0001}面の層の数を減らすことができて、{0001}面の層内に入る表面欠陥を減少できる。 (もっと読む)


【課題】GaN基板上に結晶成長する各半導体層の平坦性向上した半導体基板を実現し、この半導体基板を基礎として、特性の高性能化された半導体発光素子を提供する。
【解決手段】p型電極32と、n型電極31と、p型電極32に接続され、複数のp型窒化物系III−V族化合物半導体からなるp型積層構造(16〜20)と、n型電極31に接続され、複数のn型窒化物系III−V族化合物半導体であるn型積層構造(11〜14)と、p型積層構造(16〜20)とn型積層構造(11〜14)との間に形成された窒化物系III−V族化合物半導体からなる活性層15とを備え、n型積層構造(11〜14)がSiを5x1017cm-3以上2x1019cm-3以下の濃度で含有し、厚さが0.3nm以上200nm以下のドープ層10と、ドープ層10よりも活性層15側に設けられた超格子層13とを含む。 (もっと読む)


【課題】BiFETデバイスに含まれるFETのオン抵抗の悪化を抑制する。
【解決手段】共通基板1上に第1SL10及び第2SL20積層体が順に形成された半導体装置であって、第2積層体が除去されて残存する第1積層体は、電界効果型トランジスタを構成し、第1積層体上に積層された第2積層体は、電界効果型トランジスタとは異なる素子(バイポーラトランジスタ)を構成し、電界効果型トランジスタを構成する第1積層体は、第1積層体に形成されるリセスの停止位置を規定し、かつInGaPから成るエッチング停止層10と、リセス内に配置されるゲート電極25の下方に配置され、かつAlGaAsから成る下部化合物半導体層8と、エッチング停止層10と下部化合物半導体層8との間に挿入され、エッチング停止層に含まれるリンが下部化合物半導体層まで熱拡散し、下部化合物半導体層を構成する元素と化合することを抑止するスペーサ層9とを含む。 (もっと読む)


【課題】セルフアライメントにより容易に電極を形成することができる化合物半導体装置及びその製造方法を提供する。
【解決手段】エッチングストッパ層2の上方に、Sbを含み、所定の溶液に対するエッチング耐性がエッチングストッパ層2よりも低いSb含有層3bを形成し、Sb含有化合物半導体層3b上に、Asを含み、前記所定の溶液に対するエッチング耐性がエッチングストッパ層2よりも低いAs含有層3cを形成する。そして、前記所定の溶液を用いて、導電膜4をエッチングマスクとし、Sb含有層3b及びAs含有層3cをメサ状にウェットエッチングし、平面視でSb含有層3b及びAs含有層3cから離間した位置において化合物半導体層1の上方に導電膜5aを形成する。 (もっと読む)


【課題】半導体装置の熱抵抗を低減すること、および小型化できる技術を提供する。
【解決手段】複数の単位トランジスタQを有する半導体装置であって、半導体装置は、単位トランジスタQを第1の個数(7個)有するトランジスタ形成領域3a、3b、3e、3fと、単位トランジスタQを第2の個数(4個)有するトランジスタ形成領域3c、3dとを有し、トランジスタ形成領域3c、3dは、トランジスタ形成領域3a、3b、3e、3fの間に配置され、第1の個数は、第2の個数よりも多い。そして、単位トランジスタは、コレクタ層と、ベース層と、エミッタ層とを備えており、エミッタ層上には、エミッタ層と電気的に接続されたエミッタメサ層が形成され、このエミッタメサ層上に、エミッタ層と電気的に接続されたバラスト抵抗層が形成されている。 (もっと読む)


【課題】複数の発光点を並行して点灯させうる発光チップ等を提供する。
【解決手段】発光チップC1(C)は、基板80上に列状に配列された発光サイリスタL1、L2、L3、…から構成される発光サイリスタ列、転送サイリスタT1、T2、T3、…から構成される転送サイリスタ列、許可ダイオードDe1、De2、De3、…から構成される許可ダイオード列、ダイオードスイッチDs1、Ds2、Ds3、…から構成されるダイオードスイッチ列を備える。さらに、第1許可信号φE1に対して、反転した第2許可信号φE2を設定する許可信号設定部170、および転送サイリスタ列を駆動する第1転送信号φ1または第2転送信号φ2に応じて、第1点灯信号φI1または第2点灯信号φの電位を設定する点灯信号設定部160を備える。 (もっと読む)


【課題】これまでのMOSFETと同等の集積性を維持しながら、MOSFETに比べて優れたスイッチング特性をもつ、すなわち、室温においてS値が60mV/桁より小さな値をもつ半導体素子を提供する。
【解決手段】MOSFETと、トンネル接合を有するトンネルバイポーラトランジスタを組み合わせることにより、低電圧であっても、ゲート電位変化に対してドレイン電流が急峻な変化(S値が60mV/桁よりも小さい)を示す半導体素子を構成する。 (もっと読む)


【課題】同一基板上にヘテロ接合バイポーラトランジスタ(HBT)と電界効果トランジスタ(FET)とが形成され、HBTのコレクタ抵抗が低減されてHBTの特性が向上され、かつFETのゲートリセスのエッチング精度が良好で、FETのオン抵抗が低い半導体装置を安定的に提供する。
【解決手段】HBT101Aにおいては、サブコレクタ層が複数の半導体層13〜15の積層構造からなり、かつ、サブコレクタ層においてコレクタ層17より張り出した部分上にコレクタ電極28が形成されている。FET101B、101Cにおいては、HBT101Aのサブコレクタ層をなす複数の半導体層のうち半導体基板1側の少なくとも1層の半導体層13が、キャップ層の少なくとも一部の層を兼ねている。HBTサブコレクタ層の総膜厚が500nm以上であり、FETキャップ層の総膜厚が50nm以上300nm以下である。 (もっと読む)


【課題】高温や電流密度が高い条件下でも基板へ少数キャリアが到達するのを防いで、順方向電圧の増大を防ぐことができるバイポーラ半導体素子を提供する。
【解決手段】このSiC pinダイオード20では、n型SiC基板21とn型のドリフト層23との間に形成されている厚さを20μmとしたn型のバッファ層22が、p型のアノード層24,25からの正孔のトラップとして働いて、正孔(少数キャリア)がn型SiC基板21へ到達することを防ぐ。これにより、正孔(少数キャリア)がn型SiC基板21へ到達することを防いで、n型SiC基板21から積層欠陥が拡大するのを防いで、順方向電圧の増大を防止できる。 (もっと読む)


【課題】制御電極による制御能力を向上できるバイポーラ半導体素子を提供する。
【解決手段】このゲートターンオフサイリスタは、隣り合う2列R1,R2のメサ型のアノードエミッタ層5の間で列方向に延在している列間の第1のコンタクトホール20Bに形成された第1のゲート端子15だけでなく、各列R1,R2の端側で各列R1,R2に沿って列方向に延在している端側の第2,第3のコンタクトホール20C,20Dに形成された第2,第3のゲート端子16,17を有する。これにより、列間の第1のゲート端子15と端側の第2,第3のゲート端子16,17とでターンオフ時の転流を分担できて、転流の不揃いを抑制できる。 (もっと読む)


【課題】高速動作性・高電流駆動力を有するヘテロ接合バイポーラトランジスタ及びその製造方法を提供する。
【解決手段】バイポーラトランジスタは、コレクタとして機能するSi単結晶層3と、Si単結晶層3の上に形成された単結晶のSi/SiGeC層30a及び多結晶のSi/SiGeC層30bと、エミッタ開口部を有する酸化膜31と、エミッタ電極50と、エミッタ層35とを備えている。単結晶のSi/SiGeC層30aに真性ベース層52が形成され、単結晶のSi/SiGeC層30aの一部と多結晶のSi/SiGeC層30bとCoシリサイド層37bとにより、外部ベース層51が構成されている。エミッタ電極の厚みは、エミッタ電極50に注入されたボロンがエミッタ電極50内を拡散して、エミッタ−ベース接合部まで達しないように設定されている。 (もっと読む)


【課題】トランジスタをより高速に動作させることができるようにする。
【解決手段】リン酸および過酸化水素水を用いたウェットエッチングにより選択的にInGaAsをエッチングすることで、n−InGaAs層102をパターニングしてソースコンタクト層(第1半導体層)112を形成するとともに、チャネル層114の側部をエッチングして幅が狭くされたチャネル層114aを形成する。このウェットエッチングにより、所望のメサ幅(例えば15nm)としたチャネル層114aを形成する。 (もっと読む)


【課題】室温(300K)以上において正孔濃度が1.0×1015cm‐3以上で、かつ、ドーパント原子濃度が1.0×1021cm‐3以下である実用的なp型ダイヤモンド半導体デバイスとその製造方法を提供すること。
【解決手段】単結晶ダイヤモンド基板1−1の上に形成された単結晶ダイヤモンド薄膜1−2の中には、二次元の正孔または電子チャンネル1−3が形成される。基板1−1の面方位と基板1−1の結晶軸「001」方向との成す角度をαs、ダイヤモンド薄膜1−2の面方位と単結晶ダイヤモンド薄膜1−2の結晶軸「001」方向との成す角度をαd、チャンネル1−3の面方位とダイヤモンド薄膜1−2の結晶軸「001」方向との成す角度をαcとする。単結晶ダイヤモンド薄膜1−2の表面上には、ソース電極1−4、ゲート電極1−5、ドレイン電極1−6が形成される。 (もっと読む)


【課題】ヘテロ接合バイポーラトランジスタのエミッタメサがより正確に形成できるようにする。
【解決手段】第1エミッタ電極107bの側部には、例えば酸化シリコンからなる庇部108が形成され、また、少なくともキャップ層106を含んで構成されたエミッタメサの露出している側面から庇部108の下部の領域のレッジ構造部105aにかけて形成された、例えば窒化シリコンからなる被覆層109が形成されている。被覆層109が、庇部108の側面,庇部108の下面,エミッタメサの側部,およびレッジ構造部105aの上にかけて形成されている。 (もっと読む)


【課題】 立ち上がり電圧低減と高耐圧実現の両立を可能とする構造を提案する。
【解決手段】 SiC縦型ダイオードにおいて、カソード電極21と、n++カソード層10と、n++カソード層上のnドリフト層11と、一対のp領域12と、nドリフト層11とp領域12の間に形成され、且つ一対のp領域12に挟まれたnチャネル領域16と、n++アノード領域14と、n++アノード領域14とp領域12に形成されたアノード電極22を備える。 (もっと読む)


【課題】betaの高いラテラル・バイポーラトランジスタを有する半導体装置を提供する。
【解決手段】ラテラル・バイポーラトランジスタとCMOSトランジスタが混載された半導体装置で、ラテラル・バイポーラトランジスタは、素子分離領域20に開口したオープン領域と、オープン領域19上のポリシリコン膜32と、ポリシリコン膜32から活性領域12側面へ不純物拡散したエミッタ拡散層39と、素子分離領域20上のダミー・ゲート・ポリシリコン膜50と、活性領域12上のコレクタ拡散層領域37、ベース拡散層領域27と、コレクタ電極101、ベース電極102、エミッタ電極103と、活性領域12及び前記ポリシリコン膜32上のシリサイド領域42とを備え、活性領域12上の非シリサイド領域が、ベース拡散層領域27とコレクタ拡散層領域37の間の境界領域と、活性領域12と素子分離領域20の間の境界領域を含むことを特徴とする。 (もっと読む)


【課題】犠牲エミッタ膜を高い選択性で除去することにより特性のバラツキを抑制し、高精度なホトリソグラフィー技術を必要としないシリコンゲルマニウムトランジスタの製造方法を提供する。
【解決手段】SiGe膜6上のシリコン酸化膜8上にN型の犠牲エミッタポリシリコン23を形成し、その周囲にシリコン窒化膜からなるサイドウォール7を形成する。次に、ノンドープのポリシリコン膜24を形成し、サイドウォール7及び犠牲エミッタポリシリコン23をマスクにSiGe膜6にP型不純物をイオン注入して、外部ベース領域を形成する。次に、犠牲エミッタポリシリコン23をエッチングして除去し、その下のシリコン酸化膜8も除去する。その後、犠牲エミッタポリシリコン23等が除去されたエミッタ部分にエミッタポリシリコンを形成する。犠牲エミッタポリシリコン23をエッチングして除去する工程では、エッチャントとしてTMAH水溶液を使用する。 (もっと読む)


21 - 40 / 391