説明

基板取り扱いロボットの改善した校正方法

加工システムにおけるロボットを校正する方法(500)が提供される。方法は、距離センサ(214)をロボットのエンドエフェクタ(102)に脱着自在に結合すること(502)、及び距離センサをしてセンサ(214)から基板支持体(108)までの距離を計測させること(506)を含む。そして、その距離が選択されたしきい値を満たす又はその範囲内であるかどうかを判定する。距離が選択されたしきい値を満たす又はその範囲内であるときのロボットジョイント位置を記録する。

【発明の詳細な説明】
【技術分野】
【0001】
半導体加工産業の最先端は、現在、生産を65ナノメートル及び45ナノメートルノードにまで進めている。さらに、32ナノメートル及び22ナノメートルノードにおける開発が現在進行中である。したがって、半導体加工ツール及び加工そのものを、これまで要求されたことがない許容差及び条件にまで制御することがますます重要になっている。ウェーハスクラップ及びメンテナンスダウンタイムのコストが、加工及び機器をより厳しいレベルにまで制御する要望を駆り立て、100ナノメートルを超える加工の場合には取るに足らないものであった他の問題が生じるにつれ、加工及び機器の技術者は、半導体加工をより良く制御するための新たな革新的方法を求める。
【0002】
半導体加工システムは一般に、加工システム内でウェーハを正確に移動させるためにロボットを使用する。したがって、そのようなロボットの動き及び校正はきわめて重要である。たとえば、ロボットがウェーハを降ろす又は他のやり方で置く場所が1ミリの何分の1かで誤調整されたならば、脆く壊れやすい半導体ウェーハが加工機器に衝突して、それにより、ウェーハ及び/又は機器そのものを損傷するおそれがある。ウェーハが降ろされる地点(いわゆる「ハンドオフポイント」)の校正が他の方向に1ミリの何分の1かでずれるならば、ウェーハは半導体加工機器の上に正しく載らなくなり、ハンドオフ、すなわちロボットのエンドエフェクタから加工機器までの移動動作が失敗するおそれがある。
【0003】
ハンドオフ座標を半導体ウェーハ取り扱いロボットに教育することは、退屈でミスを犯しやすいプロセスである。そのような教育のための方法は存在するが、一般に敬遠されている。一つの方法は、試験ウェーハをロボットのエンドエフェクタで把持したのち、教育ペンダントを使用して、ウェーハが、共同するウェーハ支持体に対して所望の関係にあることを技術者が認めるまでロボットを移動させることを含む。その後、将来の参照のためにロボットのジョイント座標を記録する。この方法の一つの弱点は、技術者が過ってロボットによってウェーハ及び/又はエンドエフェクタをFOUPシェルフのような障害物に衝突させてしまうことである。衝突は、望ましくない汚染を結果的に生じさせ、ウェーハ又はエンドエフェクタ又は障害物を傷つけるおそれがある。この方法のさらに別の弱点は、異なる技術者が異なる判断を下す傾向にあることである。さらなる弱点は、方法が容易には自動化されないということである。
【0004】
ウェーハ取り扱いロボットの自動校正が米国特許第6,934,606B1号に教示されている。この参照文献はウェーハ取り扱いロボット教育を教示しているが、システムは、一般に、自動化を容易にするために、ロボットのエンドエフェクタ及び/又は加工機器をある程度まで改変することを要求する。
【0005】
ロボットのエンドエフェクタ又は加工機器そのものに対する変更を要しない自動半導体ウェーハ取り扱いロボット教育システムを提供することは、半導体ウェーハ取り扱いロボットの技術分野における有意な進歩となるであろう。
【発明の概要】
【0006】
加工システムにおけるロボットを校正する方法が提供される。方法は、距離センサをロボットのエンドエフェクタに脱着自在に結合すること、及び距離センサをしてセンサから基板支持体までの距離を計測させることを含む。そして、その距離が選択されたしきい値を満たす又はその範囲内であるかどうかを判定する。距離が選択されたしきい値を満たす又はその範囲内であるときのロボットのジョイント位置を記録する。
【図面の簡単な説明】
【0007】
【図1】本発明の実施態様にしたがう半導体ウェーハ取り扱いロボットを自動的に教育する際に使用するためのワイヤレス距離センサの概略図である。
【図2】本発明の実施態様にしたがう半導体加工ロボットのためのワイヤレス自動教育センサのブロック図である。
【図3】本発明の実施態様にしたがう加工システムのための教育センサの下面図である。
【図4】本発明の実施態様にしたがう教育治具が存在するFOUP(front opening unified pod)に隣接した教育センサの正面図である。
【図5】本発明の実施態様にしたがう半導体加工ロボットを校正する方法の流れ図である。
【発明を実施するための形態】
【0008】
図1は、本発明の実施態様にしたがう半導体ウェーハ取り扱いロボットを自動的に教育する際に使用するための距離センサの概略図である。センサ100が半導体ウェーハ取り扱いロボット(図示せず)のエンドエフェクタ102の上に配置されている。エンドエフェクタ102は1対の二叉フィンガ104、106を含む。センサ100は、加工システムの基板よりも小さなサイズであり、好ましくは、本質的にエンドエフェクタ102の上に非常に安定に載るように成形されている。図1に示すように、センサ100の形状は、エンドエフェクタ及び二叉フィンガの形状を近似することができる。しかし、FOUPシェルフ及びロボット作業体積中の他の障害物との干渉を避けることができる適当な形状を本発明の実施態様にしたがって使用することができる。
【0009】
センサ100は、センサ100から、図面では108で示す共同するウェーハ支持体までの距離を感知することができる。以下さらに詳細に述べるように、一ないし六つの自由度で距離を測定するための適当な距離計測技術を本発明の実施態様にしたがって使用することができる。センサ100は、非基板状の形状を含む、すなわち、システムによって加工される基板と同様な形状及びサイズではないことが好ましい。さらには、本開示の大部分は半導体ウェーハ取り扱いロボットに関して説明するが、LCDフラットパネル及びレチクルを加工する場合にも同様な技術が使用される。したがって、加工システムが半導体ウェーハ加工システムである実施態様では、センサ100は、半導体ウェーハよりも小さく、半導体ウェーハとは異なる形状であるだけでよい。
【0010】
センサ100によって計測された、共同するウェーハ支持体108までの距離は、局所的に技術者に表示することもできるし、適当なワイヤレス通信技術を介してワイヤレスに送信することもできるし、その両方であることもできる。さらには、センサ100は、プリセットされた距離しきい値が超えられたとき、適当な指示、たとえばインジケータ灯又は可聴アラームを単に提供することもできる。プリセットされた距離が計測される又は他のやり方で検出されると、加工ロボットのジョイント座標が将来の参照のために手動的又は自動的に記録される。これは、ジョイント座標を手動的又は自動的に記録するよう技術者に指示することによって実施することができる。さらには、これは、ロボット制御装置と通信して、距離しきい値が満たされ、ロボットの現在のジョイント座標が将来の参照のためにロボット制御装置によって記録されるべきであるという指示を提供することによって実施することもできる。
【0011】
センサ100の非基板状形状が、FOUPシェルフ及びロボットの作業容積中の他の障害物との干渉を減らす又は除くのに役立つ。さらには、非基板状形状は、センサの重量を減らすのに役立ち、それにより、ロボットのアーム/エンドエフェクタ垂下計測アーチファクトを減らす。
【0012】
図2は、本発明の実施態様にしたがう半導体加工ロボットのためのワイヤレス自動教育センサのブロック図である。センサ200は電子部品エンクロージャ202を含む。電子部品エンクロージャ202内には、電源204、電力管理モジュール206及び制御装置208が配置されている。さらには、メモリ210がエンクロージャ202内に配置され、制御装置208に結合されている。なおさらには、無線周波数モジュール212がエンクロージャ202内に配置され、制御装置208に結合されている。
【0013】
距離センサ214は、図2では、エンクロージャ202内に配置されているように示されるが、エンクロージャ202の一部を形成してもよいし、エンクロージャ202に隣接して、ただしエンクロージャの外側に配置されてもよい。
【0014】
図2に示すように、電源204は、好ましくは、エンクロージャ202内に配置されたバッテリであり、電力管理モジュール206を介して制御装置208に結合されている。しかし、電源204は、十分な量の電気エネルギーを提供することができる任意の装置を含むことができる。例示的な装置としては、公知の電力貯蔵装置、たとえばバッテリ、キャパシタなど及び公知のエネルギー収穫装置ならびにそれらの組み合わせを挙げることがある。
【0015】
好ましくは、電力管理モジュール206は、Linear Technology社から商品名LTC3443として市販されている電力管理集積回路である。制御装置208は、好ましくは、Texas Instrumentsから商品名MSC1211Y5として市販されているマイクロプロセッサである。制御装置208はメモリ210に結合されているが、このメモリは、制御装置208に対して内部にあるメモリ及び制御装置208に対して外部にあるメモリをはじめとする任意のタイプのメモリの形態をとることができる。好ましい制御装置では、内部SRAM、フラッシュRAM及びブートROMを含む。メモリモジュール210はまた、好ましくは、64K×8のサイズを有する外部フラッシュメモリを含む。フラッシュメモリは、必要に応じて、不揮発性データ、たとえばプログラム、校正データ及び/又は不変性データを記憶するのに有用である。内部ランダムアクセスメモリは、プログラム動作に関連する揮発性データを記憶するのに有用である。
【0016】
制御装置208は、外部装置と通信するために、適当なポート、たとえばシリアルポートを介して無線周波数通信モジュール212に結合されている。一つの実施態様では、無線周波数モジュール212は、Bluetooth SIG(www.bluetooth.com)から市販されている周知のBluetooth規格であるBluetoothコア仕様ver.1.1(2001年2月22日)にしたがって作動する。モジュール212の一例は、Mitsumiから商品名WMLC40として市販されている。さらには、モジュール212に加えて又はその代わりに、他の形態のワイヤレス通信を使用することもできる。そのようなワイヤレス通信の適当な例は、他の形態の無線周波数通信、音響通信、赤外線通信、磁気誘導を使用する通信又はそれらの組み合わせを含む。
【0017】
制御装置208は、共同するウェーハ支持体108(図1に示す)までの距離を感知するように構成された距離センサ214に結合されている。計測される距離は、一ないし六つの自由度を有することができる。六つの自由度は、x、y及びz座標ならびにロール、ピッチ及びヨー回転成分を含む。
【0018】
センサ200は、好ましくは、絶対的な距離計測値又は距離が選択されたしきい値の範囲内もしくはその値にあるかどうかの指示のいずれかである、距離に関する指示を提供するように構成された表示装置218を含む。したがって、本発明の実施態様は、ロボットのジョイント位置を記録する前に計測距離が一定のしきい値内になるまでロボットのエンドエフェクタを動かすことだけでなく、単に距離を計測し、応答的に一定のエンドエフェクタの変位を生じさせることをも含む。
【0019】
距離検出器214は、任意のタイプの適当な距離感知技術を含むことができる。距離感知技術の適当な例は、光学感知技術220、キャパシタンス距離感知技術222、インダクタンスベースの距離感知技術224、反射光測定ベースの距離感知技術226、干渉測定ベースの距離感知技術228及びレーザ三角測量距離感知技術230を含む。これら様々な技術を交互に使用することもできるし、距離センサ214がこのような技術の適当な組み合わせを使用することもできる。たとえば、あるタイプの技術は絶対的距離感知には非常に有用であるかもしれないが、別の技術が有する極端な精度を有することはできない。たとえば、距離検出器214は、レーザ三角測量230とキャパシタンスベースの距離感知222との組み合わせを使用することができる。この実施態様では、まずレーザ三角測量技術230によって距離を感知したのち、選択されたしきい値が近づくにつれ、キャパシタンスベースの計測222のみを用いるように距離計測を切り換えることができる。
【0020】
光学ベースの距離計測220の例は、ロボット作業容積内で人工的又は自然に発生する仕様を距離検出器214内のカメラ又はイメージセンサで観察する設備を含む。その場合、仕様の事前情報をその仕様の画像と組み合わせて使用して、距離情報を認識することができる。
【0021】
キャパシタンスベースの距離感知の例は、1対の導電板をエッジ222(図1を参照して示す)に隣接して設けて、エッジ222に隣接する金属物体が、距離に対して変化するキャパシタンスを生成するようにすることを含む。そして、そのキャパシタンスを距離の指示として使用することができる。
【0022】
インダクタンスベースの技術224は、上記キャパシタンスベースの感知222にいくぶん似ている感知方式である。これに関して、一つ以上の誘導ベースのエミッタをセンサの適当なエッジに隣接して設けることができ、すると、誘導センサは、誘導電磁場発生装置によって生成される電磁場内の金属性、磁性物体の存在を感知する。
【0023】
反射光測定ベースの距離感知226は、共同的基板支持体108からの反射ビーム又は像を使用して距離の指示を提供する任意の技術を含む。したがって、レーザビームが基板支持体108に向けてわずかに斜めに発されるならば、反射角は入射角に等しくなり、センサ200に当たる反射ビームの側面の位置が距離の指示になる。
【0024】
干渉測定計測技術228は、照射光をスリット又は他の適当な構造に通して干渉計測パターンを生成することを含む。すると、基板支持体108上のパターンにおける明るい領域と暗い領域との間の距離が、センサと基板支持体との間の距離の指示を提供する。
【0025】
最後に、レーザ三角測量230は、レーザを目標108に向けてわずかに斜めに発して、センサ200から見た基板支持体108に当たるレーザビームの位置がセンサと物体108との間の距離に基づくようにする比較的簡単な技術である。
【0026】
図3は、本発明の実施態様にしたがう加工システムのための教育センサの下面図である。理解されるように、センサ100によって登録された距離は、エンドエフェクタから共同するウェーハ支持体108までの距離の直接的指示として使用される。したがって、エンドエフェクタの上に脱着自在に保持されるセンサ100の位置の変動が、校正システム全体に誤差を生じさせる。したがって、本発明の実施態様は、好ましくは、エンドエフェクタがセンサに結合するたびにセンサ100がエンドエフェクタ上で同じ正確な位置に保持されることを確実にする構造的仕様又はアーチファクトを含む。そのような正確な位置合わせは、エッジ把持式のエンドエフェクタを使用することによって容易にすることができる。しかし、本発明の実施態様はまた、センサ100の下面の改変をも含む。図3は、共同してエンドエフェクタ102に係合する正確に3本のピン300、302、304からなる可動マウントを示すセンサ100の下面図である。追加的又は代替的に、センサ100の下面は、センサをエンドエフェクタ102に位置合わせする肩のような他の仕様を含むことができる。さらには、センサ100をエンドエフェクタからの真空とかみ合わせて、センサをより効果的にエンドエフェクタ102に付着させることもできる。
【0027】
図4は、教育治具がその中に存在するFOUP(front opening unified pod)に隣接した教育センサの正面図である。FOUP400は、加工基板、たとえば半導体ウェーハを概して保持又は維持する複数のスロット又はシェルフ402を含む。図4に示すように、センサ100は、シェルフ間の距離よりも有意に狭い幅を有する。さらには、図4は、センサ100とFOUP及び治具との間の十分な隙間を示す。教育治具は、FOUP400のシェルフによって支持され、位置合わせされる。カメラタイプの距離計測センサによって認識し、検出することができるマーク又は他の仕様、たとえば穴404が治具406上に存在する。治具406は、治具406を支持するFOUPスロットの中心に対して既知の幾何学的関係を有する仕様404を提供する。一般に、二つのスロット位置が教育される。本発明の実施態様は、スロット位置を教示するための、1個をはじめとする適当な数の治具を使用することを含む。二つのスロット座標が教育される場合、基板取り扱いロボットは、スロットピッチ及びFOUPの向き(たとえば、左/右の前/後に対して傾斜)ならびにロボットの座標系中のFOUP400の場所を計測することができる。
【0028】
図5は、本発明の実施態様にしたがって半導体加工ロボットを校正する方法の流れ図である。方法500は、ブロック502で始まり、そこで、半導体加工システムの取り扱いロボットが自動教育センサとかみ合う又は他のやり方で結合する。ひとたびセンサがロボットのエンドエフェクタとかみ合うと、ブロック504が実行され、エンドエフェクタを基板支持体、たとえば図1に示す基板支持体108の近くに寄せる。ひとたび必要なおおよその近接が達成されると、ブロック506が実行され、そこで、支持体までの距離を感知する。次いで、ブロック508で、感知された距離が選択されたしきい値を満たす又はその範囲内であるかどうかを判定する。距離が選択されたしきい値を満たさないならば、制御パスはライン510に沿ってブロック512に達し、エンドエフェクタを基板支持体により近づけ、再び距離を感知する。距離が選択されたしきい値を満たす又はその範囲内に来るまでこのプロセスが繰り返され、その時点で、制御パスはライン514に沿ってブロック516に達し、そこで、取り扱いロボットのジョイント位置を記録する。加工システム内の該当する基板支持体ごとにこの方法全体が繰り返される。
【0029】
好ましい実施態様を参照して本発明を説明したが、当業者は、本発明の本質及び範囲を逸することなく形態及び詳細に変更を加えることができることを認識するであろう。

【特許請求の範囲】
【請求項1】
加工システムにおけるロボットを校正する方法であって、
距離センサをロボットのエンドエフェクタに脱着自在に結合すること、
前記距離センサをして前記センサから基板支持体までの距離を計測させること、
前記距離が選択されたしきい値を満たす又はその範囲内であるかどうかを判定すること、及び
前記距離が前記選択されたしきい値を満たす又はその範囲内であるときのロボットジョイント位置を記録すること
を含む方法。
【請求項2】
前記距離センサがワイヤレス無線周波数通信を介して前記計測距離を通信する、請求項1記載の方法。
【請求項3】
前記センサが、光学ベースの距離計測、キャパシタンスベースの距離計測、インダクタンスベースの距離計測、反射光測定ベースの距離計測、干渉計測ベースの距離計測及びレーザ三角測量からなる群より選択される少なくとも一つの距離計測技術を使用する距離検出器を含む、請求項1記載の方法。
【請求項4】
前記加工システムが、基板を加工するように構成されており、前記センサが前記基板よりも小さい、請求項1記載の方法。
【請求項5】
前記エンドエフェクタを前記センサに脱着自在に結合することが、前記エンドエフェクタを前記センサ上の共同の仕様とかみ合わせることを含む、請求項1記載の方法。
【請求項6】
加工システムにおけるロボットを校正する方法であって、
距離センサをロボットのエンドエフェクタに脱着自在に結合すること、
前記距離センサをして前記センサから基板支持体までの距離を計測させること、
前記距離センサによって計測された前記距離に基づいて前記エンドエフェクタを応答的に変位させること、及び
前記距離が前記選択されたしきい値を満たす又はその範囲内であるときのロボットジョイント位置を記録すること
を含む方法。
【請求項7】
前記距離センサがワイヤレス無線周波数通信を介して前記計測距離を通信する、請求項6記載の方法。
【請求項8】
前記センサが、光学ベースの距離計測、キャパシタンスベースの距離計測、インダクタンスベースの距離計測、反射光測定ベースの距離計測、干渉計測ベースの距離計測及びレーザ三角測量からなる群より選択される少なくとも一つの距離計測技術を使用する距離検出器を含む、請求項6記載の方法。
【請求項9】
基板加工システムにおいてロボットのエンドエフェクタから基板支持体までの距離を感知するためのセンサであって、
基板加工システムの一般的な基板よりも小さいサイズのエンクロージャ、
前記エンクロージャ内に配置された電源、
前記電源に結合された制御装置、及び
前記制御装置に動作可能に結合され、前記基板支持体までの距離を計測するように構成された距離検出器
を含むセンサ。
【請求項10】
前記制御装置に動作可能に結合されたワイヤレス通信モジュールをさらに含む、請求項9記載のセンサ。
【請求項11】
前記距離検出器が、光学ベースの距離計測、キャパシタンスベースの距離計測、インダクタンスベースの距離計測、反射光測定ベースの距離計測、干渉計測ベースの距離計測及びレーザ三角測量からなる群より選択される少なくとも一つの距離計測技術を使用する、請求項9記載の方法。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate


【公表番号】特表2010−507498(P2010−507498A)
【公表日】平成22年3月11日(2010.3.11)
【国際特許分類】
【出願番号】特願2009−534626(P2009−534626)
【出願日】平成19年10月23日(2007.10.23)
【国際出願番号】PCT/US2007/022490
【国際公開番号】WO2008/051544
【国際公開日】平成20年5月2日(2008.5.2)
【出願人】(504232136)サイバーオプティクス セミコンダクタ インコーポレイテッド (9)
【Fターム(参考)】